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Abstract

For a broad range of crystalline materials complex dislocation core structures have a significant effect on macroscopic plastic
flow, causing unexpected deformation modes that are strongly influenced by other components of stress in addition to the glide
stress on a given slip system and on the sign of stress. In this paper we use atomistic simulations of a screw dislocation in bcc
molybdenum to determine the dependence on orientation of the maximum resolved shear stress (in the direction of the Burgers
vector) required to move the dislocation. A yield criterion that enters a continuum theory of bcc crystal plasticity and includes
non-glide components of stress is developed along the lines of a general framework that was proposed several years ago. The
predicted results are in excellent agreement with the atomistic simulations. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ample evidence now exists for a broad range of
crystalline materials, particularly those with non-close-
packed lattices, that dislocation core structures have a
significant influence on macroscopic plastic flow (for
recent reviews see [1–5]). Common signatures of core
effects are: unexpected deformation modes and slip
geometries; strong and unusual dependence of flow
stresses on crystal orientation and temperature; and,
most commonly, a break-down of Schmid’s law which
states that glide on a given slip system, defined by a slip
plane and direction of slip, commences when the re-
solved shear stress on that system, the Schmid stress,
reaches a critical value. Implicitly other components of
the stress tensor and, for well-annealed crystals, the
sign of stress are assumed to play no role in the
deformation process. Schmid’s law was established
originally for metals with close-packed crystal struc-
tures [6]. These assumptions are often invalid for mate-
rials in which the dislocation core effects are important
(see, for example, [2,7–11]). This was emphasized

prominently by Sir Alan Cottrell in the closing address
of a conference to celebrate the ‘50th Anniversary of
the Concept of Dislocations in Crystals,’ [12]: ‘… for
too long we have taken the fcc dislocation as the
paradigm of all dislocation behavior; but, as the studies
of bcc screw dislocations have shown, the fcc structures
and properties are the exception rather than the norm.’

At the same time the overwhelming majority of stud-
ies of plastically deforming crystals made in the frame-
work of the finite-strain continuum theory [13–16] have
assumed the Schmid-type constitutive behavior. Conse-
quently, these studies principally apply to fcc metals in
which plastic deformation is, indeed, controlled by the
shear stress acting on a slip plane in the slip direction.
In fcc metals the dissociation of dislocations into
Shockley partials keeps them confined to the close-
packed {111} planes for every orientation of the dislo-
cation line and, therefore, they possess planar core
structures and obey Schmid’s law. On the other hand,
in materials with more complex and open structures the
cores may spread into several non-parallel planes for
some orientations of the dislocation line.

In this paper we focus on the break down of the
Schmid law due to non-planar cores with the aim to
incorporate these effects into the constitutive relations
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Fig. 1. (a) Structure of the core of the 1/2[111] screw dislocation depicted using differential displacements; (b) Orientations of all the {110} and
{112} planes belonging to the [111] zone.

for macroscopic continuum models of plastically de-
forming crystals. Specifically, we concentrate on the slip
behavior arising from the non-planar spreading of the
1/2�111� screw dislocation in bcc metals that is gener-
ally regarded as controlling many important features of
slip in these materials [5,17]. Two distinct deviations
from Schmid’s law can be identified. First, the critical
resolved shear stress (CRSS) for slip may depend on the
shear stress in the slip direction acting in different
planes of the core spreading that could be alternative
slip planes. Secondly, the CRSS may be influenced by
other components of the applied stress tensor, in partic-
ular shear stresses in the direction perpendicular to the
Burgers vector. In the case of the screw dislocation in
bcc metals this can be attributed to small edge compo-
nents of displacement within the core of screw disloca-
tions [8,9,11,18].

In the present study we concentrate only on the effect
of shear stresses in the slip direction acting on planes
into which the core spreads. In the case of the 1/2�111�
screw dislocation these are three {110} planes of the
�111� zone.1 The dependence of the CRSS on the
orientation of the maximum resolved shear stress plane
is first studied by atomistic modeling of the glide of the
1/2�111� screw dislocation. This dependence demon-
strates the break-down of Schmid’s law arising from the
effect of shear stresses acting in the three {110} planes
that contain the [111] direction and comprises the well-
known twinning–anti-twinning asymmetry of slip ob-
served in bcc metals [1,10,17]. Using a continuum
framework for the effects of non-glide stresses [24,25]

that was employed earlier in the case of Ni3Al [16,26],
we then construct the yield criterion that can accurately
reproduce the stress-state dependence of the atomistic
simulations. This criterion captures the slip characteris-
tics arising from the atomic structure and properties of
dislocation cores and thus provides a bridge between
atomic and continuum scales in the study of the plastic
deformation of bcc metals.

2. Atomistic study of the glide of 1/2[111] screw
dislocations

The atomistic calculations presented in this paper
have all been made using a many-body central force
potential of the Finnis–Sinclair type for molybdenum
[27] with a molecular statics relaxation method. The
calculated core structure of the 1/2[111] screw disloca-
tion is shown in Fig. 1a using the method of differential
displacements [2].2 To facilitate the interpretation of
this picture the orientations of all the {110} and {112}
planes belonging to the [111] zone are shown in Fig. 1b.
It is seen that the core is spread principally into three
{110} planes of the [111] zone. Since the core structure
shown in Fig. 1a is not invariant with respect to the
[101� ] diad, a symmetry operation of the bcc lattice, then
another energetically equivalent configuration related
by this symmetry operation must exist, as first pointed
out in [22]. In this alternative configuration spreading
of the core into three {110} planes is found on the
other side relative to the line of their intersection. The

1 Core structure of this type was first suggested on crystallographic
grounds [19] and specific details of core spreading were then revealed
by atomistic calculations of various sophistication (see, for example,
[2,10,11,20,21]) though the main features were captured already in the
early studies, the results of which were presented in Asilonar at
ICSMA 2 [22]. Very recently this type of core spreading was confi-
rmed experimentally in a high-resolution electron microscopic study
of dislocations in molybdenum [23].

2 The atomic arrangement is shown in the projection perpendicular
to the direction of the dislocation line ([111]) and circles represent
atoms within one period. The [111] component of the relative dis-
placement of the neighboring atoms produced by the dislocation is
depicted as an arrow between them. The length of the arrows is
proportional to the magnitude of the relative displacements, and in
this projection it is taken to be equal to the separation of neighboring
atoms when the magnitude of the displacement is equal to �1/6[111]�.
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core structure of the same type has been found in
earlier calculations employing generic pair potentials
[1,10,20,22], as well as in the recent calculations using
quantum mechanics based non-central potentials [21].

The glide of the 1/2[111] screw dislocation arising
from a shear stress parallel to the Burgers vector but
not necessarily on the slip plane is studied in this paper
for various planes corresponding to the maximum re-
solved shear stress plane (MRSSP). More general cases
of stress application in tension and compression will be
reported elsewhere [28]. The orientation of the MRSSP
is defined by the angle � which it makes with the (1� 01)
slip plane as depicted in Fig. 2 and commonly used in

earlier theoretical and experimental studies [1,17]. Due
to the crystal symmetry it is sufficient to consider
−30°���30°. However, it should be noted that ori-
entations corresponding +� and −� are not equiva-
lent. In general, for an orientation � the shear in the
[111] direction is equivalent to the shear in the [1� 1� 1� ]
direction for the orientation −�. But for a given �

shears along [111] and [1� 1� 1� ] are not generally equivalent
because the (111) plane is not a mirror plane in the bcc
lattice.3 This asymmetry related to the sense of shearing
has usually been described in terms of the twinning–
anti-twinning asymmetry of shear on {112} planes but
it applies to all planes of the �111� zone except {110}
planes. Since the notion of the twinning–anti-twinning
asymmetry is a common terminology (see, for example,
[1,10,17,20]), we shall refer to the orientations of the
MRSSP corresponding to −30°���0° orientations
as those of twinning shear and 0°���30° orientations
as those of anti-twinning shear. When the sign of the
applied stress changes the twinning and anti-twinning
orientations interchange.

For a given orientation of the MRSSP the applied
stress was imposed via the corresponding elastic dis-
placement field evaluated using anisotropic elasticity.
Starting with the fully relaxed core, the applied stress
was increased incrementally and full relaxation carried
out at every step until the dislocation started to move
for that orientation. At that point, the applied shear
stress, i.e. the MRSSP, is referred to as the CRSS (and
as �M in Section 3). The calculated dependence of the
CRSS on � is shown in Fig. 3 for molybdenum. The
dislocation moved along the (1� 01) plane for all values
of � except 30° when it moved on average along the
(2� 11) plane but composed of equal segments of (1� 01)
and (1� 10) planes. However, it should be noted that for
�= −30° the (01� 1) and (1� 01) planes are equivalent.

Since the dependence of CRSS on � does not follow
1/cos �, Schmid’s law is not valid (for Schmid’s law �M

cos �=critical value when the slip is on (1� 01)). This
can be attributed to the fact that prior to the disloca-
tion motion the core changes under the influence of the
applied stress and these changes are dependent on the
orientation of the MRSSP, i.e. on the applied stress
state. An example is shown in Fig. 4 where the displace-
ment map of the dislocation core is shown for the case
of �=30° for the resolved shear stress of 0.04C44,
where C44 is the shear modulus. The spreading into the
(1� 10) plane is constricted while spreading into the (1� 01)
is extended; spreading into the (01� 1) plane is practically
unaffected. This suggests that these changes in the core
are driven by the shear stresses in the corresponding
{110} planes. In this case these stresses are the same for
(1� 01) and (1� 10) planes while no shear stress acts on the

Fig. 2. Definition of the orientation of MRSSP described by the angle
�.

Fig. 3. Dependence of the CRSS (�M), normalized by the shear
modulus C44, on �. Circles represent results of atomistic calculation
and the curve corresponds to (Eq. (4)).

Fig. 4. Structure of the core of the 1/2[111] screw dislocation for the
resolved shear stress of 0.04C44 with the MRSSP corresponding to
�=30° i.e. (2� 11) plane.

3 These two shears are equivalent if the plane of shearing is of the
{110} type owing to the �110� diad symmetry operation.
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(01� 1) plane. Hence, when constructing the yield crite-
rion for continuum studies we can assume that it will be
a function of the shear stresses on all three {110} planes
of the [111] zone that will emulate the CRSS vs �

dependence found by atomistic calculations.

3. Yield criterion

To include the effects of non-glide components of
stress in a single crystal yield criterion, Qin and Bassani
[24] proposed that slip system � is at yield when a
generalization of Schmid’s law holds:

���=��+�
�

a�
���

�=� cr
��, (1)

where �� is the Schmid stress and ��
� are the non-glide

stresses associated with the slip system �, a�
� are the

material parameters that determine the relative impor-
tance of the different non-glide components, and � cr

�� is
the critical value of the effective stress, for that system;
the non-glide stresses ��

� are homogeneous functions of
degree one in the stress tensor � and summation is over
the total number of non-glide components. The effec-
tive stress ��� defines the yield function, and here for
simplicity is taken to be linear in the stress. If ���=��,
the Schmid stress, then (Eq. (1)) reduces to Schmid’s
law. In general, ��� can be distinct from the (work
conjugate) Schmid stress and will depend on many
aspects of the crystal structure including the dislocation
core structure. The yield criterion (Eq. (1)) for slip
system � can be expressed as

�:d��=� cr
�� with d��=d�+�

�

a�
�d�

�, (2)

where d�
� are the symmetric second-order slip system

tensors that determine all relevant non-glide compo-
nents (d� resolves the Schmid stress) and �: d�tr(�·d)=
�ijdij In many cases, for example for cross-slip in fcc
metals, slip in L12 intermetallic compounds, as well as
in the present study of bcc metals, the non-glide stresses
��

� are also shear stresses, and then d�
� can be expressed

in dyadic form

d�
�=

1
2

(m�
� �n�

�+n�
� �m�

�), (3)

where m�
� and n�

� can be regarded as lattice vectors on
the same footing as the usual slip-system vectors which
define the Schmid stresses; note that in this case m�

�

n�
�=0.
For the case of dislocations in bcc lattices which is

the focus of this paper, we are motivated to consider
the shear stress acting on other planes containing the
Burgers vector for the reasons discussed above. Because
we are only interested in a single slip system, the index
� in the previous equations can be omitted from here

on. First we note that all shear stresses in the direction
of the Burgers vector can be written as a linear combi-
nation of the Schmid stress � (on the (1� 01) plane of Fig.
2) and any other shear stress parallel to that vector, for
example the shear stress on the (01� 1) plane, �(01� 1). In the
following we will introduce this non-glide-stress compo-
nent into the yield criterion, writing (Eq. (1)) as

�+a�(01� 1)=�M[cos (�)+a cos (�+60)]=� cr
��, (4)

where, as noted above,�M denotes the CRSS on the
MRSSP. As an example, for molybdenum we have
chosen the two parameters, � cr* and a (the non-glide-
stress coefficient), in this yield criterion from a least-
square fit of the data in Fig. 3. The results are
� cr* /C44=0.0586 and a=0.641. With these values the
�M vs. � given by equation (Eq. (4)) is also plotted in
Fig. 3 as a continuous curve. There is excellent agree-
ment with the atomistic simulations.

It is expedient to note that with �(1� 10) chosen as the
non-glide-stress component, the value of � cr* is on the
order of the applied stress, which seems reasonable. As
mentioned above, we could consider the stress on any
other plane containing the Burgers vector and the yield
function would not change, but the values of the
parameters � cr* and a would change. In particular, when
the non-glide-stress was calculated on either the twin-
ning or anti-twinning planes, the value of � cr* was not of
the same order as �M. Although we have only reported
results here for molybdenum, similar agreement was
found in the case of tantalum.

4. Conclusions

We have utilized atomistic simulations of dislocation
behavior to begin to develop a physically-based contin-
uum theory of bcc crystal plasticity that incorporates
the effects of non-glide components of the shear stress.
Further studies are underway to explore more general
loading and the effects of shear stresses perpendicular
to the Burgers vector. These results will be embedded in
a full, three-dimensional continuum theory of multiple
slip in bcc crystals in order to model the range of
complex phenomena that are cited in the introduction
and in a number of review papers on bcc plasticity.
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