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ABSTRACT
The formation and migration of vacancies in (11

-
21) twin boundaries in a-Ti

and a-Zr are studied by computer modelling. Three empirical central force
potentials constructed within the embedded-atom method are used to represent
atomic interactions. Minimum-energy structures for the grain boundary are
found ® rst and the vacancy is then introduced by removing an atom and
allowing further relaxation of the structure. Formation energies, entropies and
relaxation volumes are calculated for di� erent positions of vacancies. In order to
analyse the vacancy migration, and thus the boundary self-di� usion, various
vacancy jumps have been investigated and the corresponding migration
energies and entropies calculated. The most probable paths composed of these
simple jumps are then proposed. Both the formation and the migration free
energies are signi® cantly lower than in the bulk which demonstrates the role of
the grain boundary as a vacancy sink and a fast di� usion channel. These free
energies are then employed in evaluation of the di� usion coe� cient tensor, the
e� ective activation energies Q jj and the pre-exponential factors D0jj , when the jj
component of this tensor is assumed to follow an Arrhenius relationship
Djj ˆ D0jj exp …¡Q jj=kBT †. The boundary di� usion is then contrasted with the
bulk di� usion and the calculated di� usion coe� cients compared with available
experimental data.

} 1. INTRODUCTION

Grain boundaries are regions in which the atomic structure di� ers greatly from
that of the bulk (Sutton and Ballu� 1995). Consequently, they display very distinct
physical properties that signi® cantly a� ect and even control the physical and
mechanical behaviour of materials. An important property of this type is the atomic
transport, which may be several orders of magnitude faster along grain boundaries
and other interfaces than in the bulk (Ballu� 1982, Peterson 1983, Kaur and Gust
1988, Kaur et al. 1995). Such short-circuiting of the di� usion plays a primary role in
many metallurgical processes that take place at usual working temperatures. Typical
examples are creep, corrosion, solid-state transformations and penetration of impu-
rities.

Philosophical Magazine A ISSN 0141± 8610 print/ISSN 1460-6992 online # 2000 Taylor & Francis Ltd
http://www.tandf.co.uk/journals

* Email: julrfern@cnea.gov.ar

http://www.tandf.co.uk/journals


A fundamental description of the di� usion process in grain boundaries requires
understanding of their atomic structures and the mechanism of atomic transport in
such structures. Since the atomic structure of grain boundaries is crystal like (Ballu�
1986, Finnis and RuÈ hle 1993, Sutton and Ballu� 1995), the self-di� usion in the
boundaries is considered to occur via thermally assisted motion of vacancies, simi-
larly to in the bulk (Ballu� 1982, 1984, Biscondi and Pontikis 1985, Kaur and Gust
1988, Kaur et al. 1995) although the structure of interfacial vacancies and their
properties may di� er signi® cantly from those of the bulk vacancies. Since the struc-
ture of interfacial vacancies cannot be investigated directly by available experimental
techniques, the present understanding of the local structure of interfacial vacancies is
mainly based on computer simulations. The majority of such studies were performed
for elemental metals and ordered alloys crystallizing in structures with cubic sym-
metry employing either pair potentials or many-body central force potentials (Faridi
and Crocker 1980, Brokman et al. 1981, Kwok et al. 1984a,b, Vitek et al. 1985,
Mishin and Yurovitskii 1991, Nomura et al. 1991, Nomura and Adams 1992, Liu
and Plimpton 1995, Farkas and Ternes 1996, Mishin and Farkas 1997). A notable
exception is the study of the structure and migration of vacancies in hcp metals by
De Diego and Bacon (1991) using pair potentials to describe atomic interactions.

In fact, the same applies to experimental studies of grain-boundary di� usion.
The majority of these studies have been made for metals and alloys with cubic crystal
structures (Kaur and Gust 1988, Kaur et al. 1995) while investigation of the bound-
ary di� usion in hexagonal metals has been very limited in spite of the large techno-
logical importance of metals such as Ti and Zr. Furthermore, available experimental
measurements for Hf (Gutho� et al. 1993), Ti (Herzig et al. 1991) and Zr (Dyment et
al. 1991) have all been made for polycrystals and thus no correlation with the
boundary structure is available.

In this paper we present an atomistic study of the structure, formation and
migration of vacancies in a symmetric tilt boundary corresponding to a twin on
the (11

-
21) plane in Ti and Zr. The interaction between the atoms is described by

many-body central force potentials of the type known as the embedded atom method
(EAM) (Daw and Baskes 1984, Finnis and Sinclair 1984, Daw et al. 1993, Foiles
1996). In both these metals a widespread mechanism of the plastic deformation is
twinning on (11

-
21) planes (Yoo 1981; Hirth and Lothe 1982) and thus (11

-
21) twins

are common interfaces found in these materials.
First, we outline the crystallography of the boundary studied, border conditions

and starting con® gurations employed in atomistic simulations, as well as the three
di� erent many-body potentials used to describe atomic interactions. The results of
the simulations are initially the grain-boundary structures. The vacancy is then
introduced into various positions in the minimum-energy structure and its formation
energy, relaxation volume and vibrational formation entropy calculated. Ultimately,
the vacancy migration is studied. Both migration energies and entropies are calcu-
lated and the most probable paths composed of these simple jumps are then pro-
posed. On the basis of this analysis the tensor of the di� usion coe� cient is evaluated.
Assuming that the jj component of this tensor follows an Arrhenius relationship,
that is D jj ˆ D0jj exp …¡Q jj=kBT ), the e� ective activation energies Q jj and pre-expo-
nential factors D0jj are also determined. The boundary di� usion is then contrasted
with the bulk di� usion by estimating the ratio of the bulk and boundary di� usion
coe� cients. Finally, the results of this study are compared with available experimen-
tal data.
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} 2. CRYSTALLOGRAPHY OF THE BOUNDARY STUDIED AND METHOD OF

CALCULATION

The boundary studied is characterized by the twinning plane K1 ˆ …11
-
21), twin-

ning direction [
-
1

-
126], conjugate plane K2 ˆ …0001† and conjugate direction [11

-
20]

(® gure 1) (Christian 1975). Following Serra and Bacon (1986) we have used two
basic starting con® guration that di� er by symmetry. They are shown in the ‰1 -

100Š
projections in ® gures 1 (a) and (b) respectively. In these ® gures the circles represent
atoms and di� erent symbols denote the di� erent positions of atoms along the [1

-
100]

direction. In particular, white triangles, pluses, squares and crosses represent, in this
sequence, the four successive layers along this direction in the ideal hcp lattice. The
white triangles and white squares correspond to atoms belonging to the (0001) plane
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(a)

(b)

Figure 1. The [1
-
100] projections of the two structures of the (11

-
21) twin boundaries used as

starting con® gurations in atomistic simulations: (a) structure R ; (b) structure D.



in the position A of the ABAB stacking formed by these planes; the white pluses and
white crosses correspond to atoms that belong to the (0001) plane in the position B.
In the structure shown in ® gure 1 (a), denoted in the following as R ; the stacking
ABAB is the same in both grains and the structure possesses a mirror symmetry with
respect to the re¯ ection in the interfacial plane. In the structure shown in ® gure 1 (b),
denoted in the following as D, the stacking in the lower grain is ABAB but in the
upper grain ACAC. The atoms that belong to the plane C are represented by
inverted white triangles and white diamonds respectively ; the four successive layers
along the [1

-
100Š direction in the upper grain are then depicted by white triangles,

inverted triangles, squares and diamonds. This structure is invariant with respect to
the 1808 rotation around the axis parallel to the [

-
1

-
126Š direction.

In order to determine the structure of the (11
-
21) twin boundary a bicrystal with

this boundary, having the corresponding R or D symmetry, was initially constructed
geometrically as described above. Molecular statics employing a gradient method
was then used to relax the structure so as to minimize the energy with respect to
positions of individual atoms and relative rigid-body displacements of the adjoining
grains both parallel and perpendicular to the boundary plane. As a result, no average
stresses either tangential or normal to the interface are present in the relaxed struc-
ture. (For more details see, for example, Sutton (1984) and Vitek (1996)). During the
relaxation periodic boundary conditions have been applied in two directions parallel
to the boundary plane ([

-
1

-
126] and [1

-
100Š). Normal to the boundary plane, the upper

and the lower grains have been taken as semi-in® nite slabs although in practice the
atoms remained in perfect lattice positions beyond the tenth layer away from the
boundary on either side. The relaxation was regarded as complete when the force
acting on any of the atoms did not exceed 10¡3 eV A

¯ ¡1
.

The formation and migration of vacancies were then studied for the lowest-
energy structure found in the structural calculations. These simulations were per-
formed using a spherical cluster, composed of about 4000 atoms, centred at the
vacancy, with the boundary passing through this cluster ; this geometry is best suited
to this purpose owing to the almost spherical symmetry of the point defect studied.
While the structural studies were constant-pressure calculations, allowing for the
expansion and contraction of the block, the calculations involving vacancies have
been made at constant volume so that no expansion and contraction of the spherical
cluster were allowed. More details of these calculations are presented together with
the results.

A necessary precursor of any atomistic calculation is an appropriate description
of atomic interactions. In the present study the energy of the system was described by
many-body central-force potentials of EAM type that have been constructed for Ti
and Zr in the past. In particular, we used two di� erent potentials for Ti, the ® rst
constructed by FernaÂ ndez et al. (1996) and the second by Ackland (1992), and a
potential for Zr constructed by Pasianot and Monti (1999). In the following the two
potentials for Ti are denoted Ti1 and Ti2 respectively. All these potentials are ® tted
so as to reproduce the lattice parameters a and c of the corresponding hexagonal
lattice, cohesive energy, elastic moduli and, approximately, the vacancy formation
energy. A limitation of these potentials is that they do not include any possible e� ect
of covalent bonding that may play a role in transition metals due to un® lled d shell
(Pettifor 1995, Pettifor et al. 1995). This could be alleviated by using methods that
include the covalent-type d bond, such as the recently constructed bond-order poten-
tials for Ti (Girshick et al. 1998). However, the calculations employing this method
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are more than an order of magnitude time consuming than those using EAM type
potentials. At the same time, a recent analysis (Paidar et al. 1999) demonstrated that
the non-central character of atomic interactions is not very signi® cant when con-
sidering structures in which separations of the ® rst-nearest neighbours are signi® -
cantly di� erent when compared with the perfect lattice. This is the case for grain
boundaries and vacancies and thus the EAM-type potentials can be expected to be
an adequate approximation for these studies.

} 3. STRUCTURE OF THE BOUNDARY

Several distinct relaxed boundary con® gurations were found for each potential
used. They are characterized by di� erent relative displacements of the grains and
di� erent energies and are generally di� erent for di� erent potentials. This is a com-
mon phenomenon met in previous atomistic studies of grain boundaries, called
structural multiplicity (Wang et al. 1984, Vitek et al. 1985). However, the lowest-
energy structure has been found to be very similar for all the potentials used. Its
energy is in all cases four to ® ve times lower than those of the alternate structures.
For example, in the case of the Ti2 potential its energy is 150 mJ m¡2, while the next
lowest energy is 622 mJ m¡2 ; for Zr the corresponding energies are 102 and
501 mJ m¡2 respectively. The structure of the boundary with the lowest energy is
shown in ® gure 2. In all cases studied this structure was obtained when using the D
structure as a starting con® guration. The relaxed structure preserves the symmetry of
this con® guration, that is invariance with respect to the rotation around the axis
parallel to the [

-
1

-
126Š direction lying in the boundary plane. However, comparison of

® gure 2 with ® gure 1 (b) reveals that in the relaxed structure the stacking of the
(0001) planes is ABAB in both the lower and the upper grains, unlike in the starting
con® guration in which the stacking in the upper grain is ACAC. Thus the result of
the relaxation is the displacement of A layers in the upper grain into the B positions
and C layers into A positions without changing the overall symmetry of the struc-
ture.

A similar low-energy structure was found by other researchers using di� erent
potentials (Serra and Bacon 1986, Farkas 1994). Hence, while the multiple higher-
energy structures vary with the potentials used, the low-energy structure appears to
be very insensitive to the details of the description of atomic interactions. This
implies that the low-energy structure is likely to display properties common to
di� erent hcp metals and the following study of vacancies has been made for this
structure.
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Figure 2. The lowest-energy relaxed structure of the (11
-
21) twin boundary.



} 4. STRUCTURE, FORMATION AND MIGRATION OF GRAIN-BOUNDARY VACANCIES

A vacancy has always been introduced by removing one atom from the relaxed
grain boundary and allowing the local atomic neighbourhood to relax again. As
explained in } 2, a spherical simulation cell centred at the vacancy was used in
these calculations and rigid boundary (constant volume) conditions imposed.
Since the two atomic sites at a given (11

-
21) plane are equivalent in the D structure,

only one vacancy per layer needs to be investigated. In all cases studied, the vacancy
was found to be well localized and fully identi® ed with the initial atomic location.
This was the case even for vacancies positioned very near the central layer, where the
inward relaxation of the ® rst neighbours is about ten times more than in the bulk.

The formation energy of a vacancy created by the removal of an atom is, by
de® nition,

E f ˆ UN¡1 ¡ UN ¡ Ec ; …1†
where UN is the energy of the relaxed block (with the grain boundary) containing N
atoms before the vacancy has been formed, UN¡1 the energy of the relaxed block
containing N ¡ 1 atoms after the vacancy has been formed and Ec the cohesive
energy. The relaxation volume D O associated with the vacancy is determined, to
the ® rst order, via the dipole tensor P as (Schober and Ingle 1980, Schober and Petry
1993)

D O ˆ Tr …P†
3B

; …2†

where B is the bulk modulus. The dipole tensor is related to the stress induced by the
defect in the constant volume calculations and equals minus the moment of the
forces that have to be applied to the atoms in the rigid border region in order to
maintain them in ® xed positions. Its components are de® ned as

P®¯ ˆ ¡
X

`

F`
® R`

¯ ; …3†

where F`
® is the ® component of the force acting on the atom ` and R`

¯ is the ¯
component of the position vector of this atom; the summation extends over all the
atoms in the rigid border region.

The dependence of the vacancy formation energy on the distance from the
boundary plane is shown in ® gure 3 where it is plotted as a function of the layer
index n for all three potentials used; n ˆ 0 corresponds to the boundary plane. It is
seen that E f has a constant bulk value for n 5 5 and it decreases signi® cantly
towards the boundary plane. The variation in the relaxation volume, normalized
by the atomic volume O0, with the distance from the boundary plane is shown in
® gure 4. It can be seen that its absolute value increases rapidly when n ! 0.

Finally, the vibrational entropy of vacancy formation, calculated in the approx-
imation of independent oscillators, is given as (Hatcher et al. 1979)

S f ˆ kB ln
Y3N

iˆ1

!0
i

,
Y3N

iˆ1

!i… †; …4†

where !0
i are the atomic frequencies in the block with the grain boundary before the

vacancy was formed and !i the corresponding frequencies after the vacancy was
formed; kB is the Boltzmann constant. The products extend over all the atoms in
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the relaxed spherical cell as well as in the rigid border region. In this study, S f was
® rst calculated at constant volume and then corrected for constant pressure using the
well known thermodynamic relationship (Flynn 1972) S f jp ˆ S f jV ‡ B¬ D O where B
is the bulk modulus and the volumetric thermal expansion coe� cient consistent with
the potentials used (3:4 £ 10¡5 K¡1 for Ti1, 3:6 £ 10¡5 K¡1 for Ti2 and
¡0:34 £ 10¡5 K¡1 for Zr) (FernaÂ ndez et al. 2000). The value of TS f as a function
of n is shown in the lower part of ® gure 3 for T ˆ 1000 K, which is a temperature
for which signi® cant grain boundary di� usion can be expected. It is seen that this
contribution to the free energy of the vacancy formation may be up to one third of
E f at the boundary. Furthermore, the dependence of S f on n is more sensitive to the
potential used than the corresponding dependencies of E f and D O.

In the perfect hcp lattice there are only two distinct atomic jumps between the
® rst-neighbour positions. However, in the vicinity of a grain boundary, many dif-
ferent short jumps can occur owing to the loss of translational symmetry in the
direction perpendicular to the boundary plane. In order to facilitate the study of
these jumps we assembled a list of neighbours of each atom between layers ¡5 and
‡5 in the repeat cell of the D grain-boundary structure. The neighbours are de® ned
somewhat arbitrarily such that the maximum length of the jump is 1.35a, where a is
the basal lattice parameter. The total number of possible jumps that is covered by
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Figure 3. Vacancy formation energy and entropy contributions to the free energy of vacancy
formation at the temperature of 1000K as a function of the distance from the bound-
ary, denoted by the layer index n.

Figure 4. Vacancy relaxation volume (in units of the atomic volume) as a function of the
distance from the boundary, denoted by the layer index n.



this list is about 270. However, owing to the symmetry of the grain-boundary struc-
ture some of these jumps are equivalent and, when considering only the non-equiva-
lent jumps, the number of jumps that have to be analysed is reduced to about 40.

The energy barriers for the migrational paths of the vacancies have been eval-
uated as follows. First, a reaction coordinate is chosen that connects the initial and
® nal positions of the moving atom. The moving atom is then placed to various
locations along this line, while all the other atoms are at each step relaxed so as
to minimize the total energy. The maximum energy found during the passage of the
moving atom from the initial to the ® nal position is then identi® ed with the migra-
tion energy Em. Figure 5 is a [1

-
100] projection of the grain boundary structure

showing the numbering used to describe the jumps. This numbering is the same as
that employed by De Diego and Bacon (1991). The numbers stand for the layer index
n and the letters indicate various basal planes. The period in the [

-
1

-
126] direction is

{aba 0b 0} and planes such as a and a 0 are crystallographically equivalent (see ® gure
1) ; sites labelled for example, a and a are of the same type but are displaced with
respect to each other by one period along the direction of the tilt axis, [1

-
100]. The

migration energies associated with various jumps are summarized in table 1; the
corresponding migration energies in the bulk are shown in table 2. It is seen that
some migration energies, for example 2a ! 0a, may be one order of magnitude lower
than in the bulk.

The vibrational vacancy migration entropy can be calculated similarly to the
formation entropy in the approximation of independent oscillators (Vineyard
1957). It is

Sm ˆ kB ln
Y3N¡1

iˆ1

!i

,
Y3N¡1

iˆ1

! 0
i… †; …5†

where !i and ! 0
i are the ith vibrational mode of the system with the moving atom in

the initial con® guration and the saddle-point con® guration respectively ; the former
corresponds to the con® guration after the vacancy has been formed. In the saddle-
point con® guration there are only 3N ¡ 1 real frequencies since in the direction of
the motion the eigenmode is unstable. In this formulation the vibrational frequency
corresponding to the eigenmode that brings the system into the saddle-point con® g-
uration (the attempt frequency) was also removed and it is taken into account
separately when evaluating frequencies of vacancy jumps. Table 3 presents the
vacancy migration entropy calculated using equation (5) for the jumps with the
lowest migration energy. The corresponding migration energies in the bulk are
shown in table 4.
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Figure 5. The [1
-
100] projection of the structure of the (11

-
21) twin boundary showing the

numbering used to describe the di� usional jumps.



} 5. MIGRATION PATHS AND DIFFUSION COEFFICIENTS

In the following we assume that the self-di� usion along grain boundaries takes
place by migration of vacancies via the jumps described in the previous section. After
a jump ¬ has taken place, either the vacancy may return to the original position by
the reversal of this jump or a di� erent jump occurs. The lower the probability of the
reverse jump, the higher is the probability that a new jump occurs, that is the lower is
the correlation of such jumps (Mishin 1995; Mishin and Herzig 1995). In this way the
di� using atom can cover a long distance through vacancy jumps. Owing to the
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Table 1. Vacancy migration energies evaluated for various jumps using the three di� erent
potentials. Jumps are labelled according to the indexing system of ® gure 5. Sites a and
a are positioned in two di� erent neighbouring boundary periods along the tilt axis.

Energy (eV) Energy (eV) Energy (eV)

from to Ti1 Ti2 Zr from to Ti1 Ti2 Zr from to Ti1 Ti2 Zr

0a 1b 0.277 0.549 0.283 1b 0a 0.279 0.557 0.348 2a 0a 0.056 0.398 0.220
1b 0 0.435 0.645 0.438 0a 0 0.437 0.653 0.503 0a 0.707 1.168 0.852
2a 0.130 0.425 0.261 ¡1b 0.044 0.355 0.150 1b 0.499 0.679 0.410
2a 0.780 1.195 0.893 ¡1b 0.763 1.240 0.927 1b 0 0.148 0.456 0.226
3b 0.827 1.056 0.951 2a 0.423 0.714 0.516 ¡1b 1.635 1.955 1.656
3b 0 2.327 2.646 2.381 2a 0 0.224 0.491 0.332 ¡1b 0 1.122 1.453 1.166
4a 0.553 0.739 0.615 ¡2a 1.711 1.990 1.762 ¡2a 0.267 0.437 0.310

¡2a 0 1.198 1.488 1.271 3b 0.269 0.548 0.376
3b 0.368 0.680 0.546 3b 0 0.511 0.817 0.656
3b 0.803 1.149 0.944 4a 0.533 0.818 0.790

¡3b 0.449 0.609 0.547 4a 0.699 1.031 0.790
4a 0 0.605 0.840 0.701 5b 0.476 0.752 0.549
5b 0.532 0.665 0.560 6a 0.506 0.672 0.545

Table 2. Bulk migration energies.

Energy (eV)

Bulk Ti1 Ti2 Zr

Basal 0.506 0.727 0.57
Non-basal 0.483 0.782 0.59

Table 3. Vacancy migration entropies for several low-migration-energy jumps. The indexing
system is the same as in table 1.

Entropy (kB ) Entropy (kB ) Entropy (kB )

from to Ti1 Ti2 Zr from to Ti1 Ti2 Zr from to Ti1 Ti2 Zr

0a 1b 0.24 1.36 0.45 1b 0a 0.08 1.34 3.38 2a 0a 1.01 1.16 4.89
2a 0.09 1.40 3.37 ¡1b 0.73 1.28 2.13 1b 0 1.52 0.95 1.77

2a 0 ¡0.41 1.03 2.83 ¡2a 2.18 0.40 0.37



periodicity of the grain boundary the random walk of a vacancy can be thought of as
composed of various simple paths between equivalent positions. Each path will
occur with a frequency depending on the migration energies and entropies involved
in individual jumps and the number of paths that contribute signi® cantly will be
increasing with increasing temperature.

Grain-boundary di� usion is best quanti® ed by the grain-boundary di� usion
coe� cient which is generally a tensor. For example, the xx component of this tensor
is (Ma and Ballu� 1994)

Dxx ˆ 1
2

N

¬ˆ1

¸¬x2
¬n¬fx¬ exp

S¬

kB
exp ¡ Q¬

kBT
; …6†

where N is the number of non-equivalent jumps ¬ from a lattice site h, ¸0
¬ is the

attempt frequency of the jump ¬ evaluated in the approximation of independent
oscillators, x¬ is the x component of the jump, n¬ is the fraction of the lattice sites
from which a jump ¬ can take place, fx¬ is the correlation factor in the x direction,
S¬ ˆ S f

h ‡ Sm
¬ is the total entropy and Q¬ ˆ E f

h ‡ Em
¬ is the activation energy asso-

ciated with the jump ¬ ; E f
h and S f

h are the vacancy formation energy and entropy
respectively at the site h. Obviously, the higher the activation energy Q¬, the less the
corresponding jump contributes to the di� usion coe� cient. Table 5 shows the acti-
vation energies of various vacancy jumps in increasing order for each potential used.
The horizontal empty line indicates the ® rst ten jumps with the lowest Q¬ that are
considered when identifying di� erent paths of vacancy migration; for these paths Q¬

does not exceed 90% of the bulk activation energy.
The di� usion coe� cient, given by equation (6), can be evaluated using a kinetic

Monte Carlo technique where di� usion is treated as a correlated walk in a periodic
system with multiple jump frequencies. In this case all possible paths are considered
and the correlation factors fx¬ are determined within this scheme (Mishin 1995,
Mishin and Herzig 1995). However, we have adopted a simpli® ed approach in
which we select several most probable paths for which we can assume that at relevant
temperatures the correlation factors are very similar, of the order of one, for all the
jumps involved; this is corroborated in the following. In order to analyse the
di� erent paths we evaluate the normalized probabilities of vacancy jumps from a
given position to a neighbouring site. For a jump ¬ the probability is

P¬ ˆ G¬



G ; …7†

where G¬ ˆ ¸0
¬ exp …¡Gm

¬ =kBT † is the frequency of the jump ¬, ¸0
¬ is the attempt

frequency and Gm
¬ ˆ Em

¬ ¡ TSm
¬ is the migration free energy associated with this

jump; the summation over  includes all neighbouring sites into which jumps can
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Table 4. Bulk migration entropies.

Entropy (kB)

Bulk Ti1 Ti2 Zr

Basal 3.68 1.59 5.93
Non-basal 2.19 2.40 6.36



take place. As the temperature increases the normalized probabilities P¬ for a given
vacancy jump change in such a way that some of the previously less probable jumps
become feasible.

The procedure to ® nd the most probable path for a vacancy is now as follows.
We start with the vacancy in a chosen position and let the vacancy jump according to
the highest normalized probability that is not a back jump. Once the jump has
occurred, we proceed similarly, but now from the new vacancy position. The
jumps are then continued until a position equivalent to the starting position is
reached. For example, for the Ti1 potential at 300K, the vacancy starting at 0a
position has a probability close to unity of jumping into any of the two symmetric
positions 2a or ¡2a; for the reverse jump the probability is 0.98. From 2a the next
most probable jump is to 1b 0 with the jump probability 0.02. Once the vacancy
jumps into the layer 1 or ¡1, it is essentially trapped in the jumps (1b; ¡1b) which
do not contribute to the di� usion. The normalized probability of this symmetric
jump is almost equal to one and, therefore, highly correlated. The next most prob-
able jump is back to 2a which again does not contribute to the di� usion process. The
subsequent possible jump is to 0a 0 with the jump probability less than 10¡4, which is
a position equivalent 0a. The whole sequence of di� usional jumps is then (0a; 2a),
(2a; 1b 0), (1b 0 ; 0a 0). The same is also found for the Ti2 and Zr potentials. This path is
indicated in ® gure 6 as (À). Two other possible paths can occur in which the vacancy
crosses the grain boundary plane. They are (0a; 2a), (2a; 1b 0), (1b 0 ; ¡1b 0),
…¡1b 0 ; ¡2a†, …¡2a; 0a) (Á in ® gure 6) and …0a; 2a), (2a; ¡2a), …¡2a; 0a) (the same
total length as (Á) but not shown in ® gure 6). The former path is found for all three
potentials while the latter only for the Ti2 and Zr potentials.

At high temperatures, the number of alternative jumps that a vacancy can
accomplish increases. As a result, new and more complicated paths between equiva-
lent positions than those shown in ® gure 6 may be considered. The overall e� ect is
spreading of the zone in which the vacancy moves, decreasing thus the trapping
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Table 5. Activation energies Q¬ evaluated for various jumps using the three di� erent poten-
tials. The indexing system is the same as in table 1. Bulk activation energies are also
reported.

Energy, Energy, Energy,
Ti1 Ti2 Zr

Jump (eV) Jump (eV) Jump (eV)

…1b; ¡1b† 1.299 …1b; ¡1b† 1.531 …1b; ¡1b† 1.551
…0a; 2a† 1.386 …0a; 2a† 1.609 …0a; 2a† 1.727
…1b; 2a 0† 1.478 …2a; ¡2a† 1.643 …1b; 2a 0) 1.733
…0a; 1b† 1.533 …1b; 2a 0† 1.668 …0a; 1b) 1.749
…2a; 3b† 1.599 …0a; 1b† 1.733 …2a; ¡2a) 1.817
…2a; ¡2a† 1.600 …2a; 3b† 1.759 …2a; 3b† 1.882
…1b; 3b† 1.622 …1b; ¡3b† 1.789 …0a; 1b 0† 1.903
…0a; 1b 0† 1.692 …0a; 1b 0† 1.829 …1b; 3b† 1.947
…1b; ¡3b† 1.704 …1b; 5b† 1.841 …1b; ¡3b† 1.948
…1b; 2a† 1.753 …1b; 3b† 1.857 …1b; 5b† 1.961

…1b; 5b† 1.787 …2a;6a† 1.883 …2a; 6a† 2.051
…2a; 5b† 1.806 …0a; 4a† 1.923 …2a; 5b† 2.056
…0a; 4a† 1.809 …2a; 5b† 1.963 …0a; 4a† 2.080

Bulk 2.01 2.18 2.33



power of the grain boundary. For example, the jump (1b; ¡1b) is no longer as
correlated as at low temperatures and alternative jumps, such as (1b; 2a) or
(1b;§3b), may take place. This multiplicity of paths, together with the decrease of
the jump correlation, increase the mobility of the vacancy and thus the di� usivity.

In order to compare with the previous case corresponding to 300K, we consider
again the Ti1 potential but now at 1000 K. The vacancy in 0a has lowered the
probability of jumping to 2a or ¡2a positions to 0.78, the reverse jump probability
being 0.31. From 2a it has almost the same probability of jumping into ¡2a, that is
crossing the grain boundary centre plane, or to 3b with probabilities 0.21 and 0.22
respectively. From 3b the most probable jumps are to 1b, ¡1b and the reverse jump
to 2a with the jump probabilities 0.56, 0.22 and 0.16 respectively. From (1b) the
jumps with the highest probabilities are to ¡1b (0.48), 3b (0.22), 2a 0 (0.13) and ¡3b
(0.08). The most probable paths are thus {(0a; 2a), (2a; ¡2a), (¡2a; 0a†}; {(1b; ¡1b),
(¡1b; 3b), (3b; 1b†}; {(1b; 2a 0), (2a 0 ; 3b 0), …3b 0; 1b 0)} and {(1b; 2a 0), (2a 0 ; 3b 0),
(3b 0 ; ¡1b 0), (¡1b 0 ; 1b 0)}.

The grain-boundary di� usion coe� cient can now be evaluated by inserting into
equation (6) the calculated formation and migration energies and entropies together
with the attempt frequencies for the vacancy sites and jumps involved in the chosen
most probable di� usional paths. These quantities are summarized in table 5; jump
entropies not reported in table 3 have been approximated by bulk values. The
components of the di� usion coe� cient tensor are usually assumed to be well
approximated by an Arrhenius-type relation

D jj ˆ D0jj exp ¡
Q jj

kBT
… †; …8†

where Q jj is the e� ective activation energy and D0jj the corresponding pre-exponen-
tial factor; jj stands for xx or yy. As an example, ® gure 7 shows the plot of log Dxx
versus 1=kBT for the case of the potential Ti1, which demonstrates the Arrhenius-
type behaviour of the di� usion coe� cient. In general, using plots of log D jj versus
1=kBT values of Q jj can be determined from their slopes and the values of D0jj can be
found from the same plots by extrapolating to 1=kBT ! 0.

Table 6 summarizes the values of Q jj and D0jj determined in this way from the
di� usion tensor originally calculated using equation (6). It can be noted that the
apparent activation energies for di� usion along the x ² ‰1 -

100Š direction are lower
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Figure 6. Two possible vacancy paths in the grain boundary studied.



than those for the y ² ‰-1 -
126Š direction, which suggests a faster di� usion along the tilt

axis.

} 6. DISCUSSION

In agreement with previous atomistic studies (Serra and Bacon 1986; Farkas
1994), we found that the minimum-energy con® guration of the (11

-
21) tilt grain

boundary corresponds to the same structure with the D-type symmetry irrespective
of the interatomic potential used. This structure, shown in ® gure 2, has therefore
been used in the atomistic studies of vacancies and grain-boundary self-di� usion.

The properties of vacancies formed in the boundary region are signi® cantly
di� erent from those of vacancies in the bulk. The formation energy E f is up to
15% lower and the relaxation volume D O between 50 and 100% larger. These
® ndings are insensitive to the potentials used and agree with those of previous
calculations that employed pair potentials (De Diego and Bacon 1991). On the
other hand, the formation entropies S f are sensitive to details of the potentials.
However, their contribution to formation free energies is less important than that
of E f ; it represents at most one third for T ˆ 1000K, a common temperature at
which experimental measurements of grain-boundary di� usion have been made. A
similar sensitivity to the potential used is also found in the case of migration entro-
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Figure 7. The dependence of the logarithm of the di� usion coe� cient calculated using
equation (6) on 1=kBT . In the case of the grain boundary the Dxx component of the
di� usion coe� cient tensor is shown while for the bulk the basal component is dis-
played. The reason for this choice is that these di� usion coe� cients describe, in both
cases, di� usion in the ‰1 -

100] direction.

Table 6. E� ective activation energies Q jj and pre-exponential factors
entering equation (8) ; x ² ‰1 -

100Š direction and y ² ‰ -1 -
126Š direction.

Ti1 Ti2 Zr

D0xx (m2 s¡1) 7 £ 10¡4 1 £ 10¡4 2 £ 10¡1

Qxx (eV) 1.45 1.61 1.74
D0yy (m2 s¡1 ) 4 £ 10¡4 3 £ 10¡4 1 £ 10¡1

Qyy (eV) 1.54 1.75 1.81



pies, but the obtained range from 0.1kB to 4kB is well within acceptable values
(Seeger and Mehrer 1970).

The loss of translational symmetry in the direction perpendicular to the bound-
ary plane results in a great diversity of possible vacancy jumps. It is seen that
migration free energies are lower for jumps towards the boundary than for the
reverse jumps; this, together with the lower formation free energy, demonstrates
that the boundary acts as a sink for vacancies. Also, migration free energies in the
grain-boundary region are lower than in the bulk, which results in faster vacancy
di� usion. The width of the region in which the formation and migration energies are
signi® cantly di� erent from those in the bulk is not more than two or three lattice
spacings (approximately 10 AÊ ). This is in good agreement with the usually accepted
values of the grain boundary width (for example Herzig et al. (1991)).

In several atomistic studies of grain-boundary di� usion (Nomura and Adams
1992, 1995, Ma et al. 1993), the formation and migration entropies have been esti-
mated using Zener’s (1951) relationship

S f
h ˆ  z¶Ef

h

Tm
; Sm

¬ ˆ  z¶Em
¬

T m
; …9†

which is based on linear elasticity. Here  Z ˆ ¡d…·=·0†=d…T =T m†, where · is the
appropriate elastic modulus at the temperature T and ·0 the same modulus at 0 K, ¶
is a constant and Tm the melting temperature ;  Z is assumed to be independent of
temperature. Equation (9) implies that S f

h=E f
h and Sm

¬ =Em
¬ are equal to the same

material-dependent constant. FernaÂ ndez and Monti (1993) found that this relation-
ship is reasonably well satis® ed in the bulk when the lattice relaxation is small.
However, equation (9) cannot be expected to hold in high-angle grain boundaries,
where local lattice distortions are large. Indeed, the results of the present calculations
give S f =E f ˆ 1:7kB eV¡1 (Ti1), 0.5kB eV¡1(Ti2), and 3.9kB eV¡1 (Zr) for the vacancy
in the layer n ˆ 0. For the fastest jump (1b; ¡1b) we obtain Sm=Em ˆ 16:5kB eV¡1

(Ti1), 3:6kB eV¡1 (Ti2) 14:2kB eV¡1 (Zr) and for the jump (2a; ¡2a) 8:2kB eV¡1 (Ti1),
0:9kB eV¡1 (Ti2) and 1:2kB eV¡1 (Zr). Hence, Zener’ s relationship for estimation of
the formation and migration entropies is unreliable for grain boundaries.

The activation energies Qgb for grain-boundary self-di� usion are usually in the
range 0.5± 0.75 of the bulk activation energies Qb (Kaur and Gust 1988, Kaur et al.
1995). Since Qb measured for ultrapure Ti and Zr are 3.14 eV (Koppers et al. 1997)
and 3.17 eV (Hood et al. 1997) respectively, this implies that Qgb º 1:5-2:4 eV. This
estimation agrees with measurements in grain boundaries for nominally pure a-Ti
(Herzig et al. 1991). The calculated values of Qgb, shown in table 6, are within this
range. However, it should be noted that the calculated ratio Qgb=Qb is between 0.7
and 0.8. This relatively high ratio of activation energies implies that the calculated
grain-boundary di� usion coe� cient is only about three orders of magnitude higher
than the bulk di� usion coe� cient (see ® gure 7) while experiments suggest a di� erence
of six orders (Vieregge and Herzig 1990, Herzig et al. 1991). The reason why the
calculated ratio Qgd=Qb is relatively high is mainly the small di� erence between the
vacancy formation energies in the grain boundary and the bulk (FernaÂ ndez et al.
1996, Pasianot and Monti 1999). This is, presumably, a consequence of a rather
special character of the (11

-
21) twin boundaries in which the local environment of

boundary atoms is closer to the bulk than in more general boundaries. The experi-
ments were, of course, made for more general boundaries.
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The calculated pre-exponential factors D0jj are three orders of magnitude higher
for Zr than for Ti, using both the potential Ti1 and the potential Ti2. This di� erence
arises owing to a high-entropy contribution to both the vacancy formation and the
vacancy migration in Zr. Indeed, experimental measurements do suggest a higher
pre-exponential factor in Zr than in Ti although by only one order of magnitude
(Vieregge and Herzig 1990, Herzig et al. 1991). This disparity is most probably again
related to the rather special character of the boundary studied when compared with
general boundaries studied experimentally.

Notwithstanding, the calculations presented in this paper capture all the essential
features of grain-boundary di� usion in both Ti and Zr. First, they demonstrate that,
in spite of the fact that di� usional processes in the boundary region are very com-
plex, the corresponding components of the tensor of the di� usion coe� cient can be
characterized by e� ective activation energies and pre-exponential factors entering an
Arrhenius-type relation. Secondly, the di� usion coe� cient is at least three orders of
magnitude higher in the boundary than in the bulk and it is signi® cantly anisotropic.
The width of the boundary region is two or three lattice spacings, as usually
assumed. Finally, the calculations not only show that grain-boundary di� usion is
faster in Zr than in Ti, as observed, but also demonstrate that in Zr the pre-expo-
nential factor (equation (8)), controlled by the corresponding entropies, is larger
than in Ti while the formation and migration energies of vacancies in these two
materials do not di� er signi® cantly.
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