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Ab initio calculation of tensile strength in iron
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Abstract

A tensile test in ferromagnetic iron for loading in [001] and [111] directions
is simulated by ab initio electronic structure calculations using all-electron
full-potential linearized augmented-plane-wave method within the generalized
gradient approximation. The theoretical tensile strengths and Young’s moduli
of ferromagnetic iron are determined and compared with those of other
materials. The magnetic and elastic behaviours of iron under uniaxial tensile
loading are discussed in detail and compared with the results for isotropic
tension (i.e. for negative hydrostatic pressure). Marked anisotropy of
theoretical tensile strength in [001] and [111] direction is explained in terms of
higher-symmetry structures present or absent along the deformation paths.

} 1. Introduction

The strength of materials is usually controlled by nucleation and motion of
dislocations or microcracks. If such defects were not present, the material loaded
in tension would only fail if the theoretical or ideal tensile strength were reached. The
stress at which this is achieved is comparable with Young’s modulus of the material
and it is an upper limit of stresses attainable prior to failure. Until recently loads of
this magnitude were approached in studies of the mechanical behaviour of whiskers
of very pure metals and semiconductors (Brenner 1956, 1957, Coleman et al. 1957,
Pearson et al. 1957, Nadgorny 1962). However, the ideal strength appears to control
both the onset of fracture and the dislocation nucleation in defect-free thin films and,
in particular, in nanostructured materials that are currently being developed. This
has been confirmed most eloquently by nanoindentation experiments (for example
Vinci and Vlassak (1996), Bahr et al. (1998), Gouldstone et al. (2000), Woodcock
and Bahr (2000) and de la Fuente et al. (2002)), which suggest that the onset of
yielding on the nanoscale is controlled by homogeneous nucleation of dislocations in
the small volume under the nanoindenter where stresses approach the theoretical
strength. This volume is almost always dislocation free since in well-annealed
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samples the average dislocation spacing is about 1 mm, while the contact area as well
as the depth in which large stresses are attained are of the order of 100 nm.

Theoretically, the ideal strength was studied in the past using semiempirical
approaches when describing atomic interactions (for a review see for example
Milstein and Chantasiriwan (1998) and references therein; ideal shear strengths
calculated for all basic cubic structures may be found in the work by Šandera and
Pokluda (1993)). However, within such schemes, parameters are fitted to equilibrium
properties of the material studied and their transferability to the state when this
material is loaded close to its theoretical strength is not warranted. In contrast,
ab initio electronic structure calculations can be performed reliably for variously
strained structures and are thus capable of determining the ideal strength of materi-
als without resort to doubtful extrapolations. Indeed, recently determination of
theoretical strength became possible using ab initio electronic structure methods
based on the density functional theory. Such calculations of theoretical tensile
strength have been made for copper (Esposito et al. 1980, Šob et al. 1998a), TiC
(Price et al. 1992), tungsten (Šob et al. 1997a, Roundy et al. 2001), NiAl (Šob et al.
1998a,b), aluminium (Li and Wang 1998, Kitagawa and Ogata 1999, Ogata and
Kitagawa 1999), b-SiC (Li and Wang 1999), AlN (Kitagawa and Ogata 1999,
Ogata and Kitagawa 1999), and recently also for MoSi2 and WSi2 (Friák et al.
2001a, 2003), diamond (Telling et al. 2000, Roundy and Cohen 2001), silicon and
germanium (Roundy and Cohen 2001), molybdenum and niobium (Luo et al. 2002),
iron (Friák et al. 2001b, Clatterbuck et al. 2002) and Si3N4 (Ogata et al. 2001, 2003,
Kocer et al. 2003).

The aim of the present contribution is to perform an ab initio study of elastic,
magnetic and structural behaviour of iron under uniaxial loading in the [001] and
[111] directions, to determine the value of theoretical tensile strength and to compare
the results with those for hydrostatic tension.

} 2. Method and computational details

To simulate a tensile test, we first calculate the total energy of the material in the
ground state. Then, in the second step, we apply some elongation of the crystal along
the loading axis by a fixed amount " that is equivalent to the application of a certain
tensile stress �. For each ", we minimize the total energy, relaxing the stresses
�?1 ¼ �?2 in the directions perpendicular to the loading axis. The stress � is given
by (Rasky and Milstein 1986)

� ¼
c

V

oE

oc
¼

1

Ac0

oE

o"
, ð1Þ

where E is the total energy per repeat cell, V is the volume of the repeat cell, c is the
dimension of the repeat cell in the direction of the loading, A¼V/c is the area of
the basis of the repeat cell in the plane perpendicular to the loading axis and c0 is the
value of c in the underformed state. The inflection point in the total energy versus
" dependence yields the maximum attainable tensile stress; if no other instability
(violation of some stability condition, soft phonon modes, magnetic spin
arrangement, etc.) occur before reaching the inflection point, it corresponds to the
theoretical tensile strength �th. The bcc structure of iron becomes bct under uniaxial
loading along the [001] axis and trigonal under [111] uniaxial loading conditions.
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As far as hydrostatic deformation is concerned, iron keeps the bcc structure
and the dimensions of the crystal change in all directions homogeneously. The
hydrostatic stress � is then calculated using the formula

� ¼
oE

oV
: ð2Þ

Our calculations have been performed by means of all-electron full-potential
linear augmented-plane-wave method (using the WIEN97 code (Blaha et al. 1997),
which is an improved and updated UNIX version of the original copyrighted WIEN
code (Blaha et al. 1990)) within the generalized gradient approximation (Perdew et al.
1996). The muffin-tin radius of iron atoms of 1.90 au is kept constant for all calcula-
tions, the number of k points in the Brillouin zone is equal to 6000, and the product
RMTkmax of the muffin-tin radius and the maximum reciprocal space vector is equal
to 10. The maximum ‘ value ‘max for the waves inside the atomic spheres and the
largest magnitude Gmax of the reciprocal vector G in the charge Fourier expansion
are set to 12 and 15 respectively.

} 3. Results and discussion

The total energy of ferromagnetic iron as a function of elongation " is shown in
figure 1 (a) for both [001] and [111] directions of loading and compared with the
result for hydrostatic strain (we apply isotropic tension, i.e. negative hydrostatic
pressure). The dimensionless parameter " reflects the changes in the crystal dimen-
sion in the direction of loading in the case of tensile test simulations and an increase
in the bcc lattice parameter in the case of hydrostatic loading.

Craievich et al. (1994) have shown that some energy extrema on constant-volume
transformation paths are dictated by the symmetry. That is, most of the structures
encountered along the transformation paths between some higher-symmetry
structures, say between bcc and fcc at the Bain path, have a symmetry that is
lower than cubic. At those points of the transformation path where the symmetry
of the structure is higher the derivative of the total energy with respect to the
parameter describing the path must be zero. These are the so-called symmetry-
dictated extrema. However, other extrema may occur that are not dictated by
symmetry and reflect properties of the specific material. The same is true for the
transformation paths corresponding to uniaxial loading (Milsten and Farber 1980,
Alippi et al. 1997). Configurations corresponding to energy minima at the transfor-
mation paths represent stable or metastable structures and may mimic atomic
arrangements that could be encountered when investigating thin films (Alippi et al.
1997) and extended defects such as interfaces and dislocations (Šob et al. 1997b,
Paidar et al. 1999).

In contrast with the tetragonal deformation path, the trigonal deformation path
(for loading along the [111] axis) passes from the bcc ground-state structure to the
simple cubic (sc) structure exhibiting at this point a maximum of the total energy
(Šob et al. 1997a,b). The symmetry-dictated energy extrema are easily visible in
figure 1 (a), namely the ground-state minimum at the bcc structure and the maximum
at the fcc (tetragonal) and sc (trigonal) deformation path.

The total energy dependences have a parabolic convex character in the neigh-
bourhood of the symmetry-dictated minimum in the bcc structure (ground state).
With increasing value of " the curves reach (owing to the nonlinear effects) their
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inflection points (indicated by vertical lines in figure 1) and become concave. The
inflection point for [001] uniaxial loading occurs (most probably incidentally) for
nearly the same elongation of "¼ 0.15 as for hydrostatic loading. In case of the [001]
tensile test simulation, this elongation corresponds to the value of the lattice
parameter in the direction of loading equal to 6.20 au (the perpendicular dimensions
are relaxed) and, in the case of hydrostatic strain, to the bcc structure with the lattice
constant of 6.20 au.

From the total energy dependences shown in figure 1 (a), we may directly deter-
mine the values of Young’s moduli Y for [001] and [111] directions of loading and
the bulk modulus B in the equilibrium ground state. Using the values of contraction
in the directions perpendicular to the loading axis, we also may calculate the
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Figure 1. (a) Total energy per atom relative to the energy of the equilibrium state, (b) stress,
(c) relative atomic volume ratio with respect to the equilibrium volume Veq and
(d) magnetic moment per atom of ferromagnetic iron loaded hydrostatically (g)
and uniaxially along the [001] (f) and [111] directions (j) versus elongation ".
The relative elongation " reflects the changes in the abcc lattice parameter for
hydrostatic loading and in the case of uniaxial tensile test simulations the increase
or decrease of the crystal dimension in the direction of loading. The vertical thin lines
show the states exhibiting maximum stress (i.e. the theoretical tensile strength).
Incidentally, the maximum stresses for [001] uniaxial loading and that for hydrostatic
loading are reached at nearly the same strain " and, therefore, the corresponding
vertical lines coincide.



corresponding Poisson’s ratios �. These quantities may be expressed in terms of the
elastic constants cij:

�E

Veq

� �½001�

¼ 1
2
Y ½001�"2½001�, Y ½001�

¼
ðc11 � c12Þðc11 þ 2c12Þ

c11 þ c12
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c12
c11 þ c12
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ð3Þ

�E

Veq
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¼ 1
2
Y ½111�"2½111�, Y ½111�

¼ 3
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c11 þ 2c12 � 2c44
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,
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B ¼ Veq

o2E
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�����
V¼Veq

¼
c11 þ 2c12

3
: ð5Þ

Here �E is the change of the total energy per atom and Veq is the equilibrium atomic
volume.

Table 1 summarizes the calculated Young’s moduli and Poisson’s ratios
together with available experimental data and the values based on equations (3)
and (4) using experimental elastic constants (Simmons and Wang 1971). Our value
of bulk modulus, namely 186GPa, is in very good agreement with experimental
value of 172GPa (Acet et al. 1994) (lattice constant extrapolated to T¼ 0K).

The fact that the theoretical tensile strength in the [111] direction is about twice
that in the [001] direction may be explained as follows. The structural energy differ-
ence Esc�Ebcc affecting the shape of the trigonal deformation path is about five
times the difference Efcc�Ebcc that affects the shape of the tetragonal deformation
path (755meVatom�1 compared with 155meVatom�1). Consequently, to reach the
nearby maximum for the [111] loading, the total energy must increase much more
than for the [001] loading. At the same time, in the former case the increase occurs
for larger values of " than in the latter case since the metastable sc structure, which
occurs for [111] loading, is obtained for higher elongation " than the fcc structure
that occurs for [001] loading ("½111�th ="½001�th ¼ 0:64=0:27 ¼ 2:37 (see figure 1 (a))). As a
result, the inflection point at the trigonal deformation path is attained for higher

Ab initio calculation of tensile strength in iron 3533

Table 1. Young’s moduli Y and Poisson’s ratios � obtained from uniaxial
tensile test simulation along the [001] and [111] directions. The results
are compared with available experimental data and also with values
based on equations (3) and (4) using experimental elastic constants
(Simmons and Wang 1971).

Y (GPa) �

Simulation, [001] 155 0.37
Experimental, [001] 132a —
From cij, [001] 143 0.36
Simulation, [111] 285 0.23
Experimental, [111] 284a —
From cij, [111] 296 0.21

aGilman (1963).



strain and corresponds to a higher value of the stress than at the tetragonal (Bain)
path. Based on these considerations, we would expect that the ratio of theoretical
tensile strengths of the two paths would be, approximately, 5/2.37¼ 2.11. The ratio
of our first-principles values ð�½111�

th =�½001�
th ¼ 27:3=12:7 ¼ 2:15Þ agrees well with this

estimate corroborating our explanation based on symmetry-dictated extrema. Thus,
in a similar way to the explanation given by Šob et al. (1997a), a marked anisotropy
of calculated ideal tensile stresses in the [001] and [111] loading directions may be
understood in terms of structural energy differences of nearby higher-symmetry
structures occurring along the deformation path.

From table 1 we may see that there is also a correlation between Young’s moduli
along the [001] and [111] directions and the ideal tensile strengths for these direc-
tions. Namely, Y[111] is about twice Y[001], similarly to the fact that �½111�

th is about
twice �½001�

th . This relation may be understood on the basis of the following considera-
tions. Young’s modulus Y is proportional to the curvature of the E versus " curve
in the ground state. Its higher value indicates that a higher value of the slope of the
curve at the inflection point (proportional to the theoretical tensile strength) may be
expected. Indeed, the ratio of the Young’s moduli Y[111]/Y[001]

¼ 1.84 is quite close
to the ratio of the theoretical tensile strengths (2.15). A similar relation between the
tetragonal shear modulus C 0 and the structural energy difference |Efcc�Ebcc| for
some cubic transition metals was observed by Wills et al. (1992).

The stresses calculated using equation (1) for tensile tests and equation (2) for
hydrostatic tension are displayed in figure 1 (b). The maximum values corresponding
to the inflection points on the total energy dependences (see figure 1 (a)) are equal to
the theoretical tensile strengths provided that no other instability (soft phonon
modes, etc.) appears before reaching the inflection. In the case of iron with its
large variety of various magnetic phases, another instability may originate from
transitions between various magnetic phases. However, for both [001] and [111] direc-
tions of loading we proved that no such transition occurs before the inflection point
configuration has been reached (Friák et al. 2001c, Šob et al. 2003). The values of
theoretical tensile strength in [001] and [111] directions are summarized in table 2 in
comparison with values determined theoretically for other materials. Non-relaxed
calculations are also included; the corresponding values are denoted by a superscript
a.

The value of the theoretical tensile strength for iron for uniaxial loading in [001]
direction, amounting to 12.7GPa and reported already in our previous work (Friák
et al. 2001b), is not very different from the value of 14.2GPa found by Clatterbuck
et al. (2002). The value of the theoretical strength for loading in [111] direction,
namely 27.3GPa, is nearly equal to that obtained for hydrostatic loading
(27.9GPa). The reason for this parallelism is not clear at present.

The relative changes in atomic volume and the dependences of magnetic moment
of ferromagnetic iron per atom on elongation are shown in figures 1 (c) and (d)
respectively. In the neighbourhood of the ground-state structure the atomic volume
increases with increasing elongation but exhibits a more complex behaviour at larger
deformations. For hydrostatically loaded states, the magnetic moment shows a
monotonic increase with increasing volume (in agreement with the work of, for
example, Herper et al. (1999)) but for tensile test simulations it exhibits local extrema
at points of both higher-symmetry structures (maxima for fcc and sc structures) as
well as at other points along the studied paths. Let us note that the increase in
the magnetic moment with deformation in the neighbourhood of the bcc ground
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state in the case of uniaxial tensile tests is also connected with increasing volume
(cf. figure 1 (c) and (d)).

} 4. Conclusions

In recent years, ab initio electronic structure calculations have progressed from
determination of equilibrium characteristics of materials, such as lattice parameters,
single-crystal elastic moduli and equations of state, to studies of attributes and
parameters corresponding to states and configurations far away from equilibrium.
One such quantity is the theoretical (ideal) strength of materials. Since it represents
the upper limit of stresses that the material may sustain, its knowledge has important
implications for understanding the behaviour of solids at the limits of structural
stability. Furthermore, it constitutes an important parameter for the construction
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Table 2. Theoretical tensile strength �th calculated ab initio.

Material Structure Direction �th (GPa) Reference

Fe A2 [111] 27.3 This work
[001] 12.7 Friák et al. (2001b), this work
[001] 14.2 Clatterbuck et al. (2002)

W A2 [001] 28.9 Šob et al. (1997a)
[001] 29.5 Roundy et al. (2001)
[111] 40.1 Šob et al. (1997a)
[110] 54.3 Šob et al. (1997a)

Al A1 [001] 12.1 Li and Wang (1998)
[111] 11.05 Li and Wang (1998)
[111] 11a Ogata and Kitagawa (1999)

Cu A1 [001] 55a, 32a Esposito et al. (1980)
[001] 33 Šob et al. (1998a)
[110] 31 Šob et al. (1998a)
[111] 29 Šob et al. (1998a)

Diamond A4 [111] 90 Telling et al. (2000)
[111] 95 Roundy and Cohen (2001)
[001] 225 Telling et al. (2000)
[110] 130 Telling et al. (2000)

Si A4 [111] 22 Roundy and Cohen (2001)
Ge A4 [111] 14 Roundy and Cohen (2001)
Nb A2 [001] 13.1 Luo et al. (2002)
Mo A2 [001] 28.8 Luo et al. (2002)
TiC B1 [001] 44 Price et al. (1992)
NiAl B2 [001] 46 Šob et al. (1998a,b)
NiAl B2 [111] 25 Šob et al. (1998a,b)
b-SiC B3 (3C) [001] 101 Li and Wang (1999)
b-SiC B3 (3C) [111] 50.8 Li and Wang (1999)
AlN B4 [0001] 50a Ogata and Kitagawa (1999)
MoSi2 C11b [001] 37 Friák et al. (2001a)
WSi2 C11b [001] 38 Friák et al. (2001a)
b-Si3N4 P63/m [100] 72.2a Ogata et al. (2001)

[100] 57 Ogata et al. (2003)
[001] 75.0a Ogata et al. (2001)
[001] 55 Ogata et al. (2003)

Crystalline
Si3N4

Fd�33m [001] 45 Kocer et al. (2003)

aThe perpendicular dimensions of the sample were not relaxed during the calculations
(no Poisson contraction allowed).



of reliable semiempirical interatomic potentials needed for large-scale atomistic
modelling of structures that may contain highly strained regions.

In this paper, we presented simulations of the tensile test in ideal crystals of
ferromagnetic bcc iron loaded along [001] and [111] axes, using the first-principles
full-potential electronic structure calculations within the generalized gradient
approximation. The theoretical tensile strengths of iron found in this study are
12.7GPa for [001] and 27.3GPa for [111] directions of loading. This marked direc-
tional anisotropy of the theoretical tensile strength is apparently related to the
presence of distinct symmetry-dictated extrema of the energy along the different
deformation paths. The isotropic hydrostatic tension was also analysed and theore-
tical tensile strength of iron for this case was found to be 27.9GPa, very close to the
value for uniaxial [111] loading. These calculations also reveal that iron keeps
its ferromagnetic order up to the strains corresponding to the ideal strength limit.
Moreover, with increasing tensile deformation, the magnetic moment increases. This
is presumably commensurate with the magnetovolume effects, since the volume
per atom also increases. In fact, the increase in the magnetic moment is fastest
for the hydrostatic tension when it is accompanied by the fastest increase in the
atomic volume.
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