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Strain-rate dependent mechanism of cooperative dislocation
generation: application to the brittle–ductile transition
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Abstract

A strain-rate dependent mechanism of cooperative dislocation generation in loaded solids above a critical temperature is
described. The massive dislocation activity, which commences near the crack tip at the brittle-to-ductile transition temperature is
modeled in terms of this mechanism. The strain-rate dependence of the critical temperature arises from the glide of both
pre-existing dislocations and dislocations which are ‘thermally nucleated’ below the critical temperature by the cooperative
process. Depending on their relative contributions, the apparent activation energy associated with the brittle-to-ductile transition
temperature is either equal to or larger than the activation energy for dislocation motion. We compare the predictions of the
model with observations in TiAl. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The brittle-to-ductile transition (BDT) [1] exhibited
by most materials is associated with two distinct fea-
tures, (i) the transition is marked by a dramatic increase
in the dislocation activity at the crack tip concomitant
with a rapid increase of the fracture toughness [2]; and
(ii) an apparent activation energy can be associated
with the strain-rate dependence of the brittle-to-ductile
transition temperature (BDTT). This is often, but not
always, the same as the activation energy for disloca-
tion motion. For example, in silicon and other semicon-
ductors [2,3], the activation energy associated with the
BDTT is almost exactly equal to the activation energy
for dislocation motion. However, in TiAl single crystals
[4], the activation energy associated with the BDTT is
1.4 eV when the slip is dominated by ordinary disloca-
tions and 4.9 eV when it is dominated by superdisloca-
tions. Despite this difference in the activation energies,
the BDTT, while varying with the strain rate, remains
in the same temperature range, viz. between 516–750
and 635–685°C for ordinary and superlattice disloca-
tions, respectively [4].

We have recently proposed a cooperative dislocation
generation process in loaded crystals that can lead
above a critical temperature to the formation and ex-
pansion of many dislocation loops without any energy
barrier [5–8]. In the present paper, we advance this
development to a new level in which dislocation genera-
tion occurs in a strain-rate dependent manner. This
comprehensive model is then used to explain the BDT
and predict the BDTT. The model also shows why in
certain situations, the apparent activation energy asso-
ciated with the BDTT can be substantially higher than
the activation energy for dislocation motion.

2. Synopsis of the cooperative dislocation generation
model

The density of homogeneously nucleated dislocation
loops of radius r is proportional to the Boltzmann
factor, exp[−H(r)/kBT ], where H(r) is the formation
enthalpy of the loop, kB, the Boltzmann constant and
T, the temperature. For an isolated shear loop, when
the material is loaded by a shear stress � in the direc-
tion of the Burgers vector,

H(r)=K0
�

r ln
� r

r0

�
+cr

n
−�b�r2 (1)
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where K0= [�0(2−�0)b2/4(1−�0)], b is the magnitude
of the Burgers vector, �0 the elastic shear modulus in
the slip plane, �0 the Poisson ratio, K0c the core energy
of the dislocation and r0 the cut-off radius. The second
term in Eq. (1) is the work done by the external stress
and thus the density of loops at a given temperature is
higher in the loaded solid. Dislocation loops of atomic
sizes have finite formation energies typically in the
range 0.5–3.0 eV and can thus form by spontaneous
fluctuations at finite temperatures. However, these
loops are sub-critical in size and usually shrink and
disappear. When the applied stress is much smaller than
the ideal shear strength, the activation barrier for the
unstable expansion of individual loops is large, of the
order of 10 eV. Hence, the homogeneous nucleation of
individual dislocations is highly improbable as always
assumed.

The cooperative dislocation generation represents the
simultaneous nucleation and subsequent evolution of
many sub-critical dislocation loops that form at finite
temperatures in a loaded solid. This process, which
occurs owing to the combined effect of dislocation
interactions and entropy in both the nucleation and
evolution stages, is manifestly different from the nucle-
ation and unstable expansion of an individual disloca-
tion loop. The analytical treatment of dislocation
interactions is a formidable but tractable task [9]. There
is, however, a simpler approach based on the mean field
theory [10,11] where the effect of dislocation interac-
tions is probed indirectly in two steps. First, a crystal
with ‘effective’ properties is defined. These properties
reflect the presence and interactions of many subcritical
dislocation loops. In the second step, the behavior of
test dislocation loops in this ‘effective’ medium is inves-
tigated. Using the renormalization group technique of
statistical mechanics, it can be shown that the N-body
Hamiltonian describing the self and interaction energies
of N dislocation loops is equivalent to the Hamiltonian
of a test loop in a medium with appropriate effective
properties [9,12].

The effective properties are identified in the following
way [6]. When a dislocation loop is formed in a
medium containing other loops, a rearrangement of the
existing loops takes place by contraction or expansion
under the influence of the stress field of the newly
formed loop. Under applied loads there is a net plastic
strain associated with this rearrangement. This addi-
tional strain is responsible for a decrease of the ‘effec-
tive moduli’ that relate stresses and total strains in the
medium. The self energy of the test loop in the effective
medium is proportional to the effective moduli just as
the energy of an isolated dislocation loop is propor-
tional to the elastic moduli. Thus, the formation en-
thalpy of a test loop in the effective medium can be
written as in Eq. (1) but with K0 replaced by Keff=K0/�,
where � is akin to a ‘dielectric function’ and is the

energy coefficient written in terms of the effective mod-
uli. � describes the decrease of the self energy of the test
loop due to the plastic strain associated with other
loops.

At low temperatures, the difference between the ef-
fective and elastic moduli is very small and � is nearly
equal to unity, which is its minimum value. As the
temperature increases, the probability of formation of
dislocation loops increases in the loaded crystal, which
in turn, increases the strain of plastic type in the
medium. Consequently, the effective moduli decrease
and � increases. As a result, the formation enthalpy of
the test loop in the effective medium is smaller than
that of an isolated loop of the same size. In the N-body
description, this corresponds to the reduction of the
formation energy of a dislocation loop present amidst
other loops owing to their mutual interactions. This, in
turn, promotes the formation of more dislocation loops
in the crystal, which further increases the plastic strain.
A positive or ‘cooperative’ feedback is set up between
the formation of additional sub-critical dislocation
loops and the continued reduction of the effective mod-
uli. Concomitant with the reduction of the formation
energy, the activation barrier and the critical radius for
expansion of the test loop decrease progressively as the
temperature increases (in contrast, the activation bar-
rier for the expansion of a single dislocation loop does
not vary with temperature.) At the same time, the
entropy of the dislocation loops increases as their num-
ber increases with temperature. Ultimately, at a critical
temperature, Tc, the free energy of the test loop van-
ishes. The unstable expansion and glide of the test loop
in the effective medium above Tc corresponds to the
spontaneous nucleation and glide of many dislocation
loops in the stressed crystal. This massive dislocation
activity makes the effective moduli approach zero or �

diverge to infinity above Tc.
This mechanism of cooperative dislocation genera-

tion can operate in all crystalline materials, both in the
presence and absence of applied loads. In a material
that is not loaded, this process is the well-known
Kosterlitz–Thouless (K–T) defect-mediated phase
transition [10,12,13], which occurs just below the melt-
ing temperature. This transition was first recognized in
two dimensions but the mechanism was later general-
ized to three dimensions [14]. The principal difference
between the K–T type models and our approach [5–
8,15] is the presence of external loads which enables the
cooperative instability to take place well below the
melting temperature in both two and three dimensions.

2.1. Strain-rate effects

In our previous studies, we have developed a static
description of the cooperative instability in dislocation-
free two [6] and three-dimensional (3-D) crystals [7,8].
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The application of this mechanism to the BDT [15]
showed that the model can explain the sudden and
massive onset of dislocation activity at the BDTT. The
estimated critical temperature for the cooperative insta-
bility was in the same range as the BDTT in a variety
of brittle materials. However, the model could not
predict the strain-rate dependence of the BDTT since
dynamical effects were not included. In this paper, we
incorporate the effect of dislocation dynamics and in-
vestigate how this affects the onset of the cooperative
instability. Two types of dislocation activity influence
the dynamics (i) the glide of pre-existing dislocations
below Tc affects the onset of the cooperative instability
by contributing to the plastic strain similarly as do the
sub-critical dislocation loops; (ii) glissile dislocations
can be generated by thermal activation at temperatures
below Tc since the activation barrier is reduced owing
to the cooperative interactions. This barrier falls below
2 eV at temperatures 100–200 K below Tc. The glide of
such ‘thermally nucleated’ dislocations also contributes
to the plastic strain.

In order to consider the effect of dislocation dynam-
ics, it is necessary to specify the time period over which
dislocation glide occurs and contributes to the plastic
strain. In applications to the BDT, an appropriate
choice is the time that elapses before the stress intensity
reaches the critical value for fracture at a given loading
rate. Let the contributions to � from the glide of
pre-existing dislocations of density n0 and thermally
nucleated ‘free’ dislocations of density nf during a spe-
cified time interval be denoted by �0 and �f, respec-
tively. The ‘dielectric function’ � can then be
decomposed as

�=1+4��0+4��b+4��f (2)

�b represents the contribution from sub-critical disloca-
tion loops formed by thermal fluctuations. The static
model [6,7] did not include the contributions �0 and �f.
In this limit, �b depends only on the number of sub-crit-
ical dislocation loops present which in turn is affected
by the value of �. Thus, the self-consistent determina-
tion of � is the crucial step in the analysis of the
cooperative instability. This step gains further impor-
tance in the dynamical model because nf and its associ-
ated contribution �f depend on the reduced activation
barrier which in turn is determined by �. In addition,
the number of sub-critical loops and hence �b at any
temperature depend on both n0 and nf.

For a given set of material parameters and fixed
external loads, the cooperative instability occurs when �

attains a critical value, �c. Thus, from Eq. (2), we see
that the temperature at which the cooperative instabil-
ity occurs is determined by how much �0 and �f con-
tribute towards �c. Both these contributions are
strain-rate or time-dependent and, thus, the BDTT
predicted by this model is expected to be strain-rate

dependent. Since �0 and �f determine the critical tem-
perature, the activation energy associated with the
strain-rate dependence of the BDTT depends on the
activation energy, Um for dislocation motion and the
apparent formation energy, Un, associated with the
thermally nucleated dislocations of density, nf, at the
BDTT. However, Un is not a constant but is tempera-
ture-dependent and its value is determined by the effec-
tiveness of dislocation interactions in reducing the
energy barrier of test loops. Thus, Un depends on � and
we seek a self-consistent solution to this complex
problem.

We begin with a summary of equations that describe
the static 3-D model [7]. The number density, n(r), of
test dislocation loops of radius r at temperature T is
proportional to the Boltzmann factor, exp[−Heff(r)/
kBT ] where Heff(r) is the enthalpy of a test loop of
radius r given by

Heff(r)=
� r

r 0

� K0

r0�(r �)
��

ln
�r �

r0

�
+c+1

�
dr �−�b�r2 (3)

The determination of � is made easier by identifying the
following variables:

l= ln
� r

r0

�
; y(l)=

� r
r0

�6

exp
�−Heff(r)

kBT
�

;

h(l)=
K0r

kBT�(r)
(4)

The logarithmic length scale defined by l follows
naturally for dislocation type interactions. The function
y(l) is proportional to the number density of test
dislocation loops and h(l) is a measure of the effective
interaction coefficient Keff. In terms of these variables,
the self-consistent solution to � and the determination
of the critical temperature in the static limit can be
re-cast as the solution to a system of coupled differen-
tial equations [7],

dh
dl

=h−
h2y�3

96
;

dy
dl

=
�

6−
h(l+c+1)

4
+2�b�r2�

n
y

(5)

We now consider the time-dependent contributions
to � arising from the glide of pre-existing and thermally
nucleated dislocations. The plastic strain due to the
glide of dislocations of density n0 in a specified time
interval is equal to the product of n0, the Burgers vector
b and the distance traveled. It was shown in an earlier
work [16] that the dynamics of interacting dislocations
near a loaded crack is of the ‘similarity type’ when the
velocity of dislocations (�) has the form �=A(�/�0)m

exp(−Um/kBT) where A and �0 are constants and Um

is the activation energy associated with the dislocation
motion. Accordingly, if N dislocations are at positions
Xi

0(i=1, 2, …, N) at time t=0, then their positions at
time t when the crack is subject to a constant loading
rate [16,17] are given by Xi(t)�Xi

0g(t) where g(t)=
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(exp[−Um/kBT ]�t)2(m+1)/(m+2) and � is a constant.
Using this solution, the contributions to � from �f and
�0 can be estimated. To make the model analytically
tractable, we make the following assumptions (i) the
plastic strain arising from sub-critical loops of size less
than or equal to r is assumed to be time independent
and the same for all loading rates. While this is clearly
an approximation, it is reasonable in the present con-
text because this term makes the smallest contribution
to � compared with �f and �0; (ii) in accordance with
the previous assumption, the minimum size of the
dislocation loop which expands and glides macroscopi-
cally is assumed to be r. In other words, Xi

0 is set equal
to r for both pre-existing and thermally nucleated dislo-
cations. It is then straightforward to estimate the con-
tributions �f and �0 using the same definitions as in the
static model [6]. The result is

�(r)=1+4��b(r)+
�

�0

(2−�0)
(1−�0)�

�
[nf+n0]bMrg(t) (6)

where t is the minimum time available at a given
loading rate before fracture occurs and M is a constant.

The density of thermally nucleated dislocations, nf, is
calculated from a Fokker–Planck equation which de-
scribes the escape over the energy barrier for the un-
stable expansion of a test loop in the effective medium.
This procedure has been outlined in the so-called
AHNS model [18] which was first proposed to describe
the dynamics of the K–T transition in an applied field.
If rc denotes the critical radius above which the test
loop can expand in an unstable manner at a given
temperature, then rc and nf are given by

rc=
� K0

8r0�b��(rc)
��

ln
rc

r0

+c+1
�

; nf=
�y(rc)

r c
2 (7)

Having identified all the contributions to � in Eq. (2),
the next step is to determine the new dynamically
coupled differential equations for the variables defined
by Eq. (4). Owing to the contributions from �f and �0,
the equation for dh/dl differs from the static case (see
Eq. (5)) while the equation for dy/dl remains the same.
There is a complex interdependence of � (see Eqs.
(2)–(7)) which makes the self-consistent determination
of � very difficult. We break this process into the

following two parts in order to make the model
tractable. First, we determine rc and nf using only the
contributions �0 and �b and evaluate � self-consistently.
In the next step, we use the values of nf and �f in
addition to the contributions from �b and �0 and obtain
a self-consistent solution to �.

3. Results and discussion

We have solved the dynamical model using the ap-
proach summarized above with parameters appropriate
for TiAl. We consider only ordinary dislocations and
accordingly set b=2.83 A� ; �0=70 GPa and �0=0.23
represent average values for polycrystalline TiAl; the
elastic cut-off radius is taken to be the same as the
Burgers vector (r0=2.83 A� ) and c=0.25 such that the
formation enthalpy of an isolated loop of radius 3.4 A�
is approximately 1 eV. We assume further that the
material is loaded by a constant stress, �=3 GPa. Such
large stress levels are expected in the vicinity of a crack.
The activation barrier and the critical radius, rc, for
unstable expansion of an isolated loop are 22 eV and 20
A� , respectively, at 300 K. At the same temperature, the
corresponding values for a test loop in the effective
medium are only slightly lower than those for an iso-
lated loop. However, as the temperature increases, the
activation energy and rc decrease dramatically for the
test loop and at 1200 K, they are 0.15 eV and 3.1 A� ,
respectively. We now describe how the glide of pre-ex-
isting and thermally nucleated dislocations influences
the strain-rate dependence and the apparent activation
energy associated with the BDTT.

The BDT measurements in TiAl [4] show that the
critical stress intensity for fracture is approximately 2.5
MPa �m for strain rates between 10−5–10−3 s−1. In
the above experiment, a strain rate of 1.2×10−5 s−1

corresponds to a rate of stress intensity 2.5×103 Pa
�ms−1. Thus, the approximate time scale over which
glide of dislocations takes place before fracture occurs
at this strain rate is t=103 s. The time scale at other
strain rates can be found by suitable increments or
decrements from this baseline value. Since the disloca-
tion mobility is not known in TiAl, we set the values
for various parameters in such a manner as to give
reasonable values for the mobility. Accordingly, M=
1×1011, Um=1 eV, the velocity-stress exponent m=1
and the constant �=10. We consider two values of
n0= l.25×108 and 1.25×1010 m−2, respectively. The
calculated strain-rate dependence of the BDTT along
with the values of nf at this temperature are given in
Table 1 for the two cases.

The apparent activation energy, Uapp, associated with
the strain-rate dependence of the BDTT can be ob-
tained by plotting the logarithm of the strain rate
versus 1/BDTT. Uapp=4.9 eV for nf=1.25×108 m−2

Table 1
The strain-rate dependence of the BDTT in TiAl

ni=1.25×108 m−2 ni=1.25×1010 m−2Strain rate
(s−1)

BDTT (K)BDTT (K) nf (m−2)nf (m−2)

1.2×10−5 1.1×10116.0×109 672763
800 2.5×10117.4×1010 7461.2×10−4

820 1.2×10129.0×1011 8071.2×l0−3

1.3×10138391.2×10131.2×10−2 840
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and Uapp=1.57 eV for ni=1.25×1010 m−2. These very
different values of Uapp stem from the apparent forma-
tion energies associated with the density of thermally
nucleated dislocations, nf, in the two cases. As men-
tioned earlier, the thermally nucleated dislocations are
formed because of the reduction of the activation en-
ergy due to dislocation interactions and this process
depends both on temperature and �. The results of the
dynamical model show that the variation of nf at the
BDTT for different strain rates has the form nf�exp
(−Un/kBTc). We identify Un as an apparent formation
energy since the above description is phenomenological
and not indicative of the process by which they form
[18]. Using the data in Table 1, we find that Un=5.3 eV
for ni=1.25×108 m−2 and Un=0.79 eV for ni=
1.25×1010 m−2. The contribution �0 is much larger
when n0 is larger and this causes a dramatic reduction
in Un which, in turn, helps to lower the BDTT by
nearly 100 K at low strain rates. Using the analytical
form for the similarity dynamics, it can be shown that
Uapp=Um+ (m+2)Un/2(m+1) which is in excellent
agreement with the results obtained above. Thus, Uapp

can either be equal to Um when Un is nearly zero and/or
it can be substantially higher than Um depending on the
value of Un and the exponent m.

The BDTT measurements in TiAl [4] reveal very
different values for Uapp for ordinary and superlattice
dislocations (1.4 and 4.9 eV, respectively) even though
the BDTT lies in the same range for both cases. The
cooperative dislocation generation model shows that
Uapp represents a composite value determined by many
inter-related thermally activated processes. Thus, Uapp

can vary appreciably based on the relative contribu-
tions to � from the formation and glide of sub-critical,
thermally-nucleated (glissile) and pre-existing disloca-
tions. The data in Table 1 demonstrates how a differ-
ence of two orders of magnitude in the pre-existing
dislocation density suffices to produce a large difference
in Uapp when all other parameters are held fixed. This
was the rationale behind keeping the Burgers vector
fixed and equal to that of ordinary dislocations in both
cases in Table 1. It was done to ensure that changes in
too many variables did not mask the underlying reason
for the shift in Uapp and BDTT. In reality, many
variables such as b, �0, c, Um, M and n0 are expected to
be different for ordinary and superlattice dislocations in
TiAl. The fact that the BDTT lies in the same range for
both of them suggests that Um does not vary much in
the two cases. The most significant difference between
the two is the magnitude of the Burgers vector. Accord-
ing to the model, the apparent formation energy, Un,
scales with b2. Thus, Un and Uapp are expected to be
much larger for superlattice dislocations compared with
the case of ordinary dislocations in agreement with
observations.

The cooperative dislocation generation model also
helps to explain why a high value of Uapp is not always
associated with correspondingly high values of the
BDTT. Uapp represents a composite value determined
by the nucleation and glide of glissile dislocations below
the BDTT. If a material contains a high density of
pre-existing dislocations, a small density of thermally
nucleated dislocations at temperatures below the BDTT
may be sufficient for the onset of the cooperative
instability. Such a process is feasible even if the appar-
ent formation energy for thermal nucleation of glissile
dislocations is somewhat larger than that for disloca-
tion motion. This line of reasoning is supported by the
data of [4] where it was found that the fracture tough-
ness for superlattice dislocations was actually higher
than that for ordinary dislocations but the variation of
the toughness with temperature was similar to that for
ordinary dislocations in the entire brittle regime. Such
behavior is expected if the pre-existing density of super-
lattice dislocations is higher than that of ordinary dislo-
cations but the activation energies for dislocation
motion are similar in both cases.

In conclusion, a cooperative mechanism of disloca-
tion generation above a critical temperature can give
rise to massive dislocation activity of the type associ-
ated with the BDT. The strain-rate dependence of the
critical temperature arises from the motion of pre-exist-
ing dislocations and dislocations which are ‘thermally
nucleated’ below the critical temperature by the cooper-
ative process. Depending on their contributions, the
apparent activation energy associated with the brittle-
to-ductile transition temperature is either equal to or
larger than the activation energy for dislocation
motion.
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