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Abstract

In this paper we give an account of applications of quantum-mechanical (first-principles) electronic structure calculations to the problem of
theoretical tensile strength in metals and intermetallics. First, we review previous as well as ongoing research on this subject. We then describe
briefly the electronic structure calculational methods and simulation of the tensile test. This approach is then illustrated by calculations of
theoretical tensile strength in iron and in the intermetallic compound Ni3Al. The anisotropy of calculated tensile strength is explained in terms
of higher-symmetry structures encountered along the deformation paths studied. The table summarizing values of theoretical tensile strengths
calculated up to now is presented and the role of ab initio electronic structure calculations in contemporary studies of the strength of material
is discussed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The electronic structure (ES) of materials, which in the
general sense determines all their physical properties, can
be determined accurately by ab initio (first-principles) ES
calculations, i.e. from fundamental quantum theory. Here
the atomic numbers of constituent atoms and, usually, some
structural information are employed as the only input data.
Such calculations are routinely performed within the frame-
work of the density functional theory in which the compli-
cated many-body interaction of all electrons is replaced by
an equivalent but simpler problem of a single electron mov-
ing in an effective potential[1–3].1 For a given material,
the calculated total energies can be used to obtain equilib-
rium lattice parameters, elastic moduli, relative stabilities of
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competing crystal structures, energies associated with point
and planar defects, etc. In addition, we also obtain informa-
tion about electronic densities of states and charge densi-
ties that enables us to attain deeper insights and learn which
aspects of the problem are important. The calculations are
usually performed at zero temperature (0 K), but the re-
sults obtained often constitute the basis for understanding
finite-temperature properties. Recently, determination of the
theoretical strength of materials became possible using ab
initio ES calculations.

In most engineering applications, the strength of materi-
als is controlled by nucleation and motion of dislocations
or microcracks. If such defects were not present, the mate-
rial loaded in tension would only fail if the theoretical, or
ideal tensile strength were reached. The stress at which this
is achieved is comparable with the Young modulus of the
material and it is an upper limit of stresses attainable prior
to failure. Until recently, loads of this magnitude were ap-
proached in studies of the mechanical behaviour of whiskers
of very pure metals and semiconductors[4–8]. However, the
ideal strength appears to control both the onset of fracture
and dislocation nucleation in defect-free thin films and, in
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particular, in nanostructured materials that are currently be-
ing developed. This has been confirmed most eloquently by
nanoindentation experiments (see e.g.[9–14]) which sug-
gest that the onset of yielding at the nanoscale is controlled
by homogeneous nucleation of dislocations in the small vol-
ume under the nanoindenter where the stresses approach
the theoretical strength. This volume is practically always
dislocation-free, since in well-annealed samples the average
dislocation spacing is about 1�m, while the contact area, as
well as the depth in which large stresses are attained, are of
the order of 100 nm.

Theoretically, the ideal strength was studied in the past
using semiempirical approaches when describing atomic in-
teractions (for a review see e.g.[15] and the references
therein; ideal shear strengths calculated for all basic cubic
structures may be found in[16]). Within such schemes pa-
rameters characterizing interatomic forces are fitted to equi-
librium properties of the material studied. However, their
transferability to the state when this material is loaded close
to its theoretical strength is not warranted. In contrast, ab
initio ES calculations can be performed reliably for vari-
ously strained structures and are thus capable to determine
the ideal strength of materials without the resort to doubt-
ful extrapolations. Nevertheless, most of the ES calculations
were directed towards finding the equilibrium state of a given
material that corresponds to the minimum of the total en-
ergy or towards analysis of relatively small deviations from
that state. On the other hand, theoretical strength is related
to the maximum force that may be applied to the material
before an instability occurs. It is usually connected with an
inflexion point on the dependence of the total energy on de-
formation parameters.

The first paper dealing with the ideal tensile strength from
the first-principles was probably that of Esposito et al.[17]
who studied tensile deformation in Cu. However, these au-
thors did not perform relaxations of dimensions of the loaded
crystal in the directions perpendicular to the loading axis.
Ideal shear strength was calculated in[18] (V, Cr, Nb, Mo,
W, Al, Cu, Ir), [19] (Mo) and[20] (Ta), again without any
relaxation. Other ab initio calculations of properties of the
systems far from equilibrium have also been made, such as
exploration of the structural stability, but the results were
not employed to evaluate the strength[21–25].

Probably the first ab initio simulation of a tensile test, in-
cluding the relaxation in perpendicular directions to the load-
ing axis, was performed by Price et al.[26] for uniaxial load-
ing of TiC along the [0 0 1] axis. Later, our group at the In-
stitute of Physics of Materials in Brno in collaboration with
the group at the University of Pennsylvania, Philadelphia,
initiated systematic ab initio studies of theoretical strength
and stability in metals and intermetallic compounds under
extreme loading conditions. In[27], we obtained the theo-
retical tensile strengths for [0 0 1] and [1 1 1] loading axes in
tungsten. The results compared very well with experiments
performed on tungsten whiskers by Mikhailovskii et al.[28].
Further, we calculated ideal tensile strength in NiAl[29,30]

and Cu[30]. These results established a basis for further
calculations of ideal tensile strength. Li and Wang[31] com-
puted the ideal tensile strength in Al. Further, Kitagawa and
Ogata[32,33] studied the tensile strength of Al and AlN,
but did not include Poisson contraction. The group of Co-
hen and Morris at the University of California at Berkeley
calculated ideal shear strength in Al and Cu[34,35]as well
as in W [36,37], performed a thorough theoretical analy-
sis of the problem of strength and elastic stability[38] and,
among others, verified our values of ideal tensile strength
for tungsten[37]. Further calculations of the theoretical ten-
sile strength were performed for�-SiC [39], diamond[40],
Si and Ge[41], Mo and Nb[42], and for Si3N4 [43–45].
Ideal shear strength was recently calculated for TiC, TiN and
HfC [46], Mo and Nb[42], Si [47] and newly for Al and
Cu [48]. Some calculations have been done for nanowires
(amorphous Si[49], MoSe nanowires[50]), grain bound-
aries[51–54], and interfaces[55,56].

From 1997, ab initio calculations of theoretical strength
under hydrostatic tension (i.e., negative hydrostatic pres-
sure) also appear[57–63]. As the symmetry of the structure
does not change during this deformation, simpler ab initio
approaches may be applied.

Recently, we have simulated a tensile test in prospective
high-temperature materials, namely in transition metal dis-
ilicides MoSi2 and WSi2 with the C11b structure. These
studies included calculation of the tensile strength for [0 0 1]
loading and analysis of bonds and their changes during the
test[64–66]. Theoretical tensile strength of iron in the load-
ing direction [0 0 1] was determined in[67–72]; in [69,70],
we compared the results obtained in[67,68] and calculated
the tensile strength of iron for uniaxial loading in the [1 1 1]
direction. As discussed in[69,71] and also in Section 4.1.2
of the present review, no magnetic instabilities occur prior
to reaching the inflexion point in the energy versus elonga-
tion curve for uniaxial loading along the [0 0 1] and [1 1 1]
directions as well as for the hydrostatic loading and, there-
fore, the calculated values of theoretical strength of iron are
not influenced by magnetic effects.

Most ab initio calculations of theoretical strength up to
now analyzed just the position of the inflexion point in the
dependence of the total energy on the elongation which
yields the maximum of the tensile stress during loading.
If any other instability (violation of some stability condi-
tion, soft phonon modes, magnetic spin arrangement etc.
[14,31,38,42,69,71,73–77]) does not occur prior to reach-
ing this inflexion point, the maximum of the tensile stress
also corresponds to the theoretical tensile strength. In prin-
ciple, analysis of the phonon spectrum of a strained crystal
at each point of the deformation path should be necessary
and sufficient to ascertain the stability of the investigated
material. Such an analysis based on ab initio calculations is,
however, extremely demanding and has been made only in
a very recent study of strength of Al by Clatterbuck et al.
[78]. These authors performed ab initio calculations of the
phonon spectra as a function of strain for uniaxial tension
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along the [0 0 1], [1 1 0] and [1 1 1] directions as well as
for relaxed〈1 1 2〉{1 1 1} shear. They found that in all four
cases, phonon instabilities determine the theoretical strength
of Al. In some materials, another elastic stability criterion
may be violated prior to reaching the inflexion point at the
energy versus elongation curve. It was shown that this is the
case of the [0 0 1] uniaxial loading in Al[31], in Nb [42]
and, very recently, in Cu[77].

Tables summarizing ab initio values of theoretical ten-
sile strengths for various materials are given in[69,79–82]
and, most up-to date, inTable 1in Section 5 of this paper.
Ref. [80] includes also ab initio values of shear strengths
and some semiempirical results. An extensive review of the
semiempirical and ab initio calculated values of uniaxial and
hydrostatic tensile strengths, as well as of shear strengths
calculated up to 1999, can be found in[81]; an up-dated
version of this database is in preparation[82].

The purpose of the present paper is to give an account
of applications of the first-principles ES calculations to the
problem of the theoretical tensile strength in metals and in-
termetallic compounds. First we briefly describe the way of
simulating the tensile test (Section 2) and the ES calcula-
tional methods (Section 3). In the next part we present a
study of iron and Ni3Al as specific examples (Section 4). In
Section 5, we summarize the values of the theoretical ten-
sile strength calculated ab initio up to now, and inSection
6 we conclude by discussing the role of ab initio electronic
structure calculations in contemporary studies of strength of
materials.

2. Tensile test simulation

To simulate a uniaxial tensile test, we start by determining
the structure and total energy of the material in the ground
state. Then, in the second step, we apply an elongation along
the loading axis by a fixed amountε that is equivalent to
application of a certain tensile stressσ. For each value of
ε we minimize the total energy by relaxing the stressesσ1
andσ2 in the directions perpendicular to the loading axis.
The stressσ is given by

σ = c

V

∂E

∂c
= 1

Ac0

∂E

∂ε
(1)

whereE is the total energy per repeat cell,V the volume
of the repeat cell,c the dimension of the repeat cell in the
direction of loading,A (equal toV/c ratio) the area of the
basis of the repeat cell in the plane perpendicular to the
loading axis, andc0 the value ofc in the undeformed state.

We are also interested in the tensile strength for hydro-
static tension. In this case, we start again with the material
in its ground-state structure, and the dimensions of the crys-
tal are gradually increased homogeneously in all directions.
The hydrostatic stressσ is then calculated using the formula
σ = dE/dV .

As stated at the end of the previous section, the inflexion
point in the dependence of the total energy on the elonga-
tion yields the maximum of the tensile stress during loading
and, in most ab initio studies up to now, this maximum stress
was considered to be the theoretical tensile strength,σth. In
some cases, however, other instabilities (soft phonons, mag-
netic transitions, violation of some other stability condition
[14,31,38,42,69,71,73–78]) may occur prior to reaching the
inflexion point; in this case, the stress corresponding to these
instabilities determines the theoretical strength for a given
mode of loading. Up to now, other elastic stability criteria
were analyzed from the first-principles in W[27], Al [31],
Mo and Nb[42], Fe [71] and Cu[77], magnetic instabili-
ties were discussed in Fe[69,71]and the soft phonon modes
were shown to play a key role in theoretical strength of Al
[78].

3. Methods of electronic structure calculations

Most electronic structure calculations have been per-
formed within the density functional theory[1–3]. Here the
problem of many interacting electrons is transformed into
study of the motion of a single electron in some effective
potential. This is described by the Kohn–Sham equation,
which is formally similar to the Schrödinger equation. In the
case of periodic solids (crystals), we search the one-electron
wave functions in the form of expansions using carefully
chosen basis functions satisfying the Bloch condition.

Various methods used in the ES calculations may be dis-
tinguished according to the choice of the basis functions.
The better we choose them (according to the character of
the problem), the smaller number of them is needed for the
description of one-electron wave functions. Commonly used
bases are augmented (APW) and orthogonalized (OPW)
plane waves, linear muffin-tin orbitals (LMTO), linear com-
bination of atomic orbitals (LCAO), Gaussian (LCGO) and
augmented Slater-type (LASTO) orbitals, augmented spheri-
cal waves (ASW), etc. The Korringa–Kohn–Rostoker (KKR)
method proceeds by the use of the Green function of the
Kohn–Sham equation and is also called Green function (GF)
method. The pseudopotential approach, applied mostly to
solids containing no d- or f-electrons, is also widely used.
A detailed description of these methods may be found in
many books and articles, e.g. in[83–86].

After choosing an appropriate basis, the Kohn–Sham
equation is solved iteratively in order to attain selfcon-
sistency, i.e., the electron density, determined from the
effective one-electron potential, must generate the same ef-
fective potential (which is again a functional of the electron
density). The quality and speed of the convergence of such
calculations is related not only to the choice of a suitable
basis, but also to the sophistication of the iterative process,
where as a plausible input usually atomic-like potentials are
employed and input and output potentials are appropriately
mixed before starting a new iteration. Sometimes hundreds
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of iterations are needed, e.g. in metallic materials with high
peaks in the density of states alternating above and below
the Fermi energy, or in most surface problems.

The atomic configurations corresponding to the deformed
structures usually have a lower symmetry and, at the strength
limit, they are very far from the lowest-energy equilibrium
state. Therefore, to get reliable structural energy differences,
we must use full-potential methods (i.e. without any shape
approximation of the crystal potential and electronic charge
density). At present, several codes are available, e.g. WIEN,
VASP, FHI, FLEUR, FPLO, FPLMTO, ABINIT, SIESTA,
etc. In this study, we have used the full-potential linearized
augmented plane wave (FLAPW) code WIEN97 described
in detail in [87]. The so-called exchange-correlation energy
appearing in Kohn–Sham equations was evaluated within
the generalized-gradient approximation (GGA)[88]. This is
important especially for iron, since the local density approx-
imation (LDA) does not render the ground state of iron cor-
rectly. The muffin-tin radius of iron atoms of 1.90 au was
kept constant for all calculations. The number ofk-points in
the whole Brillouin zone was equal to 6000 and the product
of the muffin-tin radius and the maximum reciprocal space
vector,RMTkmax, was set to 10. The maximuml value for
the waves inside the atomic spheres,lmax, and the largest re-
ciprocal vector in the Fourier expansion of the charge,Gmax,
was equal to 12 and 15, respectively. In the case of Ni3Al,
the muffin-tin radii of both Ni and Al atoms were equal to
2.0 au, number ofk-points in the whole Brillouin zone was
4000, and the productRMTkmax = 8. The values oflmax and
Gmax were 12 and 10, respectively.

4. Results and discussion

4.1. Iron

4.1.1. Total energies and magnetic states of tetragonally
and trigonally deformed iron

First, we have calculated the total energy and mag-
netic moment of iron deformed along the tetragonal and
trigonal paths at constant atomic volumes ranging from
V/Vexp = 0.84 to 1.05, whereVexp is the experimen-
tal equilibrium atomic volume of the ferromagnetic bcc
iron corresponding to the lattice constantabcc = 2.862 Å
(5.408 au, 1 au = 1 bohr = 0.529177 Å). We included
non-magnetic (NM), ferromagnetic (FM) and two antifer-
romagnetic states, namely the single-layer antiferromag-
netic state (AFM1), in which the (0 0 1) or (1 1 1) planes
have alternating magnetic moments (↑↓↑↓. . . ), and the
double-layer antiferromagnetic state (AFMD), where the
pairs of (0 0 1) or (1 1 1) planes have alternating magnetic
moments (↑↑↓↓. . . ). The total energy of iron is plotted as
a function of the volume andc/a ratio in Figs. 1 and 2. We
show only those states the energies of which are the lowest
for a given configuration. InFig. 1, we can clearly see the
“horseshoes” dividing the plane into the AFM1, AFMD

Fig. 1. Total energy (per atom) of iron as a function of the tetragonal
c/a ratio and volume relative to the energy of the FM bcc ground state
calculated within the GGA. Here the bcc structure corresponds toc/a = 1
and the fcc structure toc/a=√

2 [21,23]. Only states with the minimum
energy are shown. The contour interval is equal to 20 meV. Thick lines
show the FM/AFMD and AFMD/AFM1 phase boundaries. The cross
corresponds to the global, symmetry-dictated[21,23] minimum (ground
state). The path representing the simulation of the tensile test for loading
along the [0 0 1] direction is denoted by full circles; the highest circle
marked by an arrow corresponds to the maximum stress obtained in the
simulation of the tensile test.

Fig. 2. Total energy (per atom) of iron as a function of the trigonalc/a
ratio and volume relative to the energy of the FM bcc ground state, calcu-
lated within the GGA. Here the bcc structure corresponds toc/a = 1, the
simple cubic structure toc/a = 2 and the fcc structure toc/a = 4 [23].
Only states with the minimum energy are shown. The contour interval is
equal to 50 meV. Thick lines show the FM(HS)/NM, FM(HS)/FM(LS),
FM(LS)/NM and FM(LS)/AFM1 phase boundaries. The cross corresponds
to the global symmetry-dictated[21,23] minimum (ground state), the tri-
angles show the local minima of the total energy of the fcc states in
the FM(HS) and FM(LS) region atV/Vexp = 1.037 and 0.911, respec-
tively. The square atV/Vexp = 0.955 denotes the crossing point of the
dependences of the total energy of the FM(HS) and FM(LS) fcc states
on volume. A more detailed analysis shows that this square represents a
“sharp” saddle point[69]. The path representing simulation of the ten-
sile test for loading along the [1 1 1] direction is denoted by full circles;
the state corresponding to the maximum stress attained in the tensile test
simulation (V/Vexp = 1.114, c/a = 1.356) lies outside the area of the
figure.
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and FM regions whereas the area ofFig. 2 is dominated
by the FM states. The global minimum of energy is in the
FM region atc/a = 1, V/Vexp = 0.985, which corresponds
to the bcc structure. The calculated equilibrium volume is
about 1.5% lower than the experimental value, which we
regard as a very good agreement.

Let us discuss the tetragonal case first (Fig. 1). Apart from
the large FM area, there are AFMD and AFM1 regions in the
neighborhood of the fcc structure, which corresponds to the
line c/a = √

2. In accordance with[89], we found that the
fcc iron with the AFM1 or AFMD spin ordering is unstable
with respect to the tetragonal deformation. A more detailed
discussion of the tetragonal case is presented in[90,91]. In
those papers, we also showed how the contour plot presented
in Fig. 1 may be used to predict the lattice parameters and
magnetic states of iron overlayers at (0 0 1) substrates.

The AFM1 and AFMD states with the trigonal symmetry
have mostly higher energy than the FM states and, conse-
quently, they are nearly invisible inFig. 2, except for the
lower right corner. However, two regions of the FM states
may be found inFig. 2: FM(HS), the high-spin states (with
magnetic moment higher than about 2�B) and FM(LS), the
low-spin states (with magnetic moment lower than about
1.2�B). There is a sharp discontinuity in the magnetic mo-
ment at the border FM(HS)/FM(LS). Nonetheless, the total
energy remains surprisingly smooth. The triangles inFig. 2
denote local energy minima of fcc FM states and the square
marks the point where the volume dependences of the total
energies of the fcc FM(HS) and FM(LS) states intersect.

4.1.2. Uniaxial and hydrostatic tensile tests
In accordance with the methodology described in

Section 2, we performed the simulation of a tensile test in
iron for uniaxial loading along the [0 0 1] and [1 1 1] di-
rections as well as for loading by the negative hydrostatic
pressure. The corresponding total energies as functions of
the relative elongationε are displayed inFig. 3(a). In the
case of the hydrostatic loading,ε corresponds to the relative
extension of the bcc lattice parameter.

It is seen fromFig. 3(a) that the total energy profiles have
a parabolic, convex character in the neighborhood of the
ferromagnetic (FM) symmetry-dictated[21,23] minimum
that corresponds to the bcc structure (ground state). With
increasingε the curves reach (due to non-linear effects)
their inflexion points (marked by vertical lines inFig. 3(a))
and become concave. The inflexion point for [0 0 1] uniax-
ial loading occurs (most likely incidentally) for nearly the
same elongation ofε = 0.15 as for the hydrostatic loading.
In the case of the [0 0 1] tensile test, this elongation corre-
sponds to the lattice parameter in the direction of loading
equal to 6.20 au (accompanied by relaxation in [1 0 0] and
[0 1 0] directions in which the lattice constant decreases to
5.12 au) and, in the case of hydrostatic strain, to the bcc
structure with the lattice constant of 6.20 au.

The tensile stresses calculated according to the formulas
given in Section 2are shown inFig. 3(b). The inflexion

points on the total energy profiles (Fig. 3(a)) correspond
to maximum stresses (Fig. 3(b)) which the material may
accommodate if its structure type does not change dur-
ing the deformation. They are equal toσ[0 0 1]

max = 12.7 GPa
(this value was reported in our previous work[67] and is
not very different from the values of 14.2 and 12.6 GPa
found in [68,71], respectively),σ[1 1 1]

max = 27.3 GPa[69,70]
and σ

[hydrostatic]
max = 27.9 GPa [69,70] for uniaxial tensile

test along the [0 0 1] and [1 1 1] direction and for hydro-
static loading, respectively. These values represent the
theoretical tensile strengths provided other instabilities
[14,31,38,42,69,71,73–78]do not come forth before the
inflexion point has been reached. In the case of iron with
its large variety of magnetic phases, another instability may
originate from transitions between those phases. However,
as it is seen fromFigs. 1 and 2, no such transition appears
during tensile tests along [0 0 1] and [1 1 1] directions (all
states involved up to the maximum stress lie in the FM re-
gion). A similar situation arises for hydrostatic deformation
[63]. Other conditions of stability[73–76]will be analyzed
in a subsequent publication, but our preliminary calcula-
tions as well as the results presented in[71] for the [0 0 1]
uniaxial deformation indicate that they will not be violated.
It should be noted that the theoretical strength for loading in
the [1 1 1] direction, equal to 27.3 GPa, is nearly the same as
that obtained for hydrostatic loading, 27.9 GPa. At present,
we do not have any plausible explanation of this fact.

In Fig. 3(a), it is seen that there are also maxima on the
total energy versusε dependence dictated by the symmetry
[21,23]. They correspond to the fcc and simple cubic (sc)
structures when simulating tensile tests with loading along
the [0 0 1] and [1 1 1] directions, respectively. These max-
ima are denoted by arrows inFig. 3(a). Their presence dic-
tates that the corresponding dependence of the energy on
elongation must level off, which imposes certain limitations
on the maximum stress[27]. In the cases when there is no
symmetry-dictated maximum (e.g. in the uniaxial tensile test
along the [0 0 1] direction of NiAl with the B2 structure in
the ground state[29]), the maximum stress is usually higher.

Since the structural energy differenceEsc − Ebcc is
about five times higher than the differenceEfcc − Ebcc
(755 meV/atom compared to 155 meV/atom), theE versus
ε curve for the [1 1 1] loading must rise much higher, al-
beit for larger strains, than that for the [0 0 1] loading (see
Fig. 3(a)). Consequently, for the tensile test in the [1 1 1]
direction the inflexion point occurs at a higher strain and for
a higher stress than in the test with loading in the [0 0 1] di-
rection. Thus, similarly as for W[27], a marked anisotropy
of ideal tensile strengths for the [0 0 1] and [1 1 1] loading
directions may be understood in terms of the structural
energy differences of nearby higher-symmetry structures
found along the deformation path.

Relative changes of atomic volume and the dependences
of the magnetic moment of FM iron are shown as func-
tions of elongation inFig. 3(c) and (d), respectively. In the
neighborhood of the ground state structure the atomic vol-
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Fig. 3. Total energy (per atom) measured relative to the energy of the FM bcc ground state (a), tensile stress (b), relative atomic volume ratio measured
relative to the equilibrium volumeVeq (c), and magnetic moment per atomµ (d) of FM iron loaded hydrostatically (full squares) and uniaxially along the
[0 0 1] (full circles) and [1 1 1] (empty triangles) directions versus the elongationε. The relative elongationε reflects the changes of the lattice parameter
abcc for hydrostatic loading and, in the case of uniaxial tensile tests, the increase/decrease of the crystal dimension in the directions of loading. The thin
vertical lines mark the states exhibiting maximum stress (i.e. theoretical tensile strength), sc means the simple cubic structure. Incidentally, the maximum
stresses for [0 0 1] uniaxial and hydrostatic loading are reached at nearly the same strainε.

ume increases with increasing elongation but it exhibits a
more complex behaviour at larger deformations. For hydro-
static loading, the magnetic moment shows monotonous in-
crease with increasing volume (in agreement with Herper
et al. [92]) while in tensile tests it exhibits local extrema at
points corresponding to higher-symmetry structures (max-
ima for fcc and simple cubic) as well as at some other points
along the paths.

4.2. Intermetallic compound Ni3Al

In contrast with iron, in the case of Ni3Al we start with the
fcc-based L12 structure. For this purpose, we renormalize
the ratioc/a by ascribing the value of c/a = 1 to the L12
structure. As a result, thec/a for the tetragonal path is by a
factor of

√
2 smaller and for the trigonal path by a factor of

4 smaller than in the case of iron.
Using the GGA, the minimum of the total energy is ob-

tained for the ferromagnetic state with the lattice constant
equal to 3.561 Å (6.729 au) and magnetic moment of 0.80�B
per formula unit. The lattice constant agrees very well with
the experimental value[93] of 3.568 Å (6.743 au) whereas
the experimental magnetic moment, 0.23�B per formula
unit, is much lower. When including the spin-orbit coupling,
Xu et al. [94] obtained 0.46�B per formula unit, which is

closer to the experimental value. At present, we are verify-
ing this conclusion.

There is a very small energy difference between the FM
and NM state of the L12 structure—only 21.3 meV/formula
unit. This is consistent with the results of Xu et al.[94]
(0.2–0.5 mRy/f.u.) and Min et al.[95] (∼1 mRy/f.u.).

Fig. 4 displays the total energy of Ni3Al as a function of
the volume andc/a for the trigonal deformation. Again, we
show only those states the energies of which are the lowest
for a given configuration. A nearly vertical border divides
the area ofFig. 4into FM and NM regions. There is a saddle
point for c/a = 0.5 andV/Vexp ∼ 1.2 (outside the area of
the figure). The minimum atc/a ≈ 0.27, V/Vexp ≈ 1.01 is
not dictated by symmetry.

Fig. 5 shows the total energy of Ni3Al as a function of
the volume andc/a for the tetragonal deformation. Here NM
regions extend to both sides of the FM ground state. How-
ever, there are no energy extrema and saddle points in those
NM regions. It is interesting that the transition from the FM
to NM state during both the trigonal and tetragonal defor-
mation is essentially continuous, with no discontinuities in
magnetic moment. Xu et al.[94] have shown that the energy
gain in Ni3Al associated with magnetism is about an order
of magnitude smaller than that due to the structural differ-
ences. Our calculations show that the NM Ni3Al in the L12
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Fig. 4. Total energy (per formula unit) of Ni3Al as a function of the
volume andc/a ratio, characterizing the trigonal deformation, calculated
within the GGA. The energy is measured relative to the energy of the
FM L12 ground state (the minimum atc/a = 1). Only states with the
minimum energy are shown. The contour interval is 20 mRy. Thick line
shows the NM/FM phase boundary. The ground-state minimum atc/a = 1
and the saddle point atc/a = 0.5 (outside the figure area) are dictated by
symmetry.

structure is stable with respect to tetragonal and trigonal de-
formations (the shear moduliC′ = (C11 − C12)/2 andC44
are nearly the same for the NM and FM states). Therefore,
magnetism does not appear to play any important role in
the control of phase stability. This is in sharp contrast with
iron, where the onset of ferromagnetism stabilizes the bcc
structure and NM bcc states are not stable with respect to
the tetragonal deformation[90,91].

Fig. 5. Total energy (per formula unit) of Ni3Al as a function of the volume
andc/a ratio, characterizing the tetragonal deformation, calculated within
the GGA. The energy is measured relative to the energy of the FM L12

ground state (the minimum atc/a = 1). Only states with the minimum
energy are shown. The contour interval is 3 mRy. Thick lines show the
NM/FM phase boundaries. The only symmetry-dictated extremum is at
c/a = 1.

Table 1
Theoretical tensile strengthsσth calculated ab initio

Material Structure Direction σth (GPa) Reference

Fe A2 [1 1 1] 27.3 [69,70]
[0 0 1] 12.7 [67,69,70]
[0 0 1] 14.2 [68]
[0 0 1] 12.6 [71]

W A2 [0 0 1] 28.9 [27]
[0 0 1] 29.5 [37]
[1 1 1] 40.1 [27]
[1 1 0] 54.3 [27]

Al A1 [0 0 1] 12.1a [31]
[0 0 1] 13.1b [54]
[0 0 1] 9.20c [78]
[1 1 1] 11.05 [31]
[1 1 1] 11b [32,33]
[1 1 1] 8.95c [78]
[1 1 0] 4.89c [78]

Cu A1 [0 0 1] 55b, 32b [17]
[0 0 1] 33 [30]
[0 0 1] 9.4a [77]
[1 1 0] 31 [30]
[1 1 1] 29 [30]

diamond A4 [1 1 1] 90 [40]
[1 1 1] 95 [41]
[0 0 1] 225 [40]
[0 0 1] 130 [40]

Si A4 [0 0 1] 22 [41]

Ge A4 [0 0 1] 14 [41]

Nb A2 [0 0 1] 13.1a [42]

Mo A2 [0 0 1] 28.8 [42]

TiC B1 [0 0 1] 44 [26]

NiAl B2 [0 0 1] 46 [29,30]
[1 1 1] 25 [29,30]

�-SiC B3 (3C) [0 0 1] 101 [39]
[1 1 1] 50.8 [39]

AlN B4 [0 0 0 1] 50b [32,33]

MoSi2 C11b [0 0 1] 37 [64–66]

WSi2 C11b [0 0 1] 38 [64–66]

�-Si3N4 P63/m [1 0 0] 72.2b [43]
[1 0 0] 57 [45]
[0 0 1] 75.0b [43]
[0 0 1] 55 [45]

c-Si3N4 Fd3̄m [0 0 1] 45 [44]

Ni3Al L12 [0 0 1] 17.5 Present work
[1 1 1] 33.7 Present work

a The values which correspond to violation of some another elastic
stability criterion prior to reaching the inflexion point at the energy vs.
elongation dependence.

b The perpendicular dimensions of the sample were not relaxed during
the calculations (no Poisson contraction allowed).

c The values obtained from the phonon instabilities.
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Now, we can also simulate tensile tests in Ni3Al in order
to get theoretical tensile strengths for uniaxial loading along
the [0 0 1] and [1 1 1] directions. For the [0 0 1] loading, the
maximum stress corresponding to the inflexion point on the
total energy versusε curve isσ

[0 0 1]
max = 17.5 GPa, and for

the [1 1 1] loadingσ[1 1 1]
max = 33.7 GPa.

5. Ab initio calculated values of theoretical tensile
strength

For the sake of completeness, we summarize inTable 1all
ab initio calculated values of the theoretical tensile strength
(including relaxation in directions perpendicular to the load-
ing axis and, if applicable, of internal structure parameters)
that have been evaluated until now. Most of them correspond
to the inflexion point on the strain dependence of the total
energy. Non-relaxed calculations are also included; the cor-
responding values are denoted by “b”. As for the strength
of W for [1 1 0] loading, the material probably breaks down
due to some other instability before reaching the inflexion
point and, therefore, the true theoretical tensile strength will
be lower than that given in the table. The situation is most
likely the same in the case of Cu where the experimental
ideal strengths are about an order of magnitude lower than
the calculated ones[30]. Semiempirical calculations[96]
indeed suggest that, for the [0 0 1] direction, the tetragonal
shear modulusC′ becomes zero (i.e., the tetragonal structure
is not stable with respect to transformation to an orthorombic
structure) well before reaching the inflexion point. It may be
expected that similar instabilities will occur for the [1 1 0]
and [1 1 1] orientations. Our recent ab initio investigation
[77] yields σ

[0 0 1]
max = 9.4 GPa forC′ = 0, still substantially

higher than the experimental result of 1.5 GPa. Possible rea-
sons of this disagreement are discussed in[77].

6. What is the role of ab initio electronic structure
calculations in contemporary studies of the strength of
materials?

The significance of ab initio (first-principles) electronic
structure calculations is in high reliability predicting new
properties and phenomena. There are no adjustable parame-
ters and well-defined approximations are introduced on the
most fundamental level. Many basic material properties may
be calculated and extensive databases may be generated.
However, we should emphasize here that the goal of the ab
initio electronic structure calculations is not merely to ob-
tain numbers, but rather insights. The results include, for
example, electronic wavefunctions, charge densities, bond
characteristics etc. By variation of some parameters of the
calculations we can learn which aspect of a given problem
is important. Analyzing total energy as a function of de-
formation and corresponding stability conditions, strength

of defect-free bulk material as well as of nanowires, grain
boundaries and other interfaces may be safely determined.

The state-of-the-art ab initio calculations are computa-
tionally very intensive and only relatively small number of
non-equivalent atoms (up to several hundreds) may be re-
laxed. For more complicated cases, e.g. for atomistic stud-
ies of mechanical properties of real materials containing
dislocations, we have to resort to simpler methods using
semiempirical interatomic potentials with adjustable param-
eters, such as Finnis–Sinclair potentials, embedded atom
method, bond-order potentials, or model generalized pseu-
dopotential theory[97–100]. To get reliable interatomic po-
tentials, one should include into the fitting procedure also
some high-energy configurations the properties of which can
be calculated by ab initio methods. This will enhance the
accuracy and transferability of such potentials considerably
since other regions of the “configurational space” that are
not accessible experimentally are taken into account. These
“less fundamental” approaches, employed in very extensive
atomic-level studies including simulation of defect structures
and their strength, proved to be extremely useful in investi-
gating generic phenomena in many systems, but they often
do not provide the desired physical accuracy for a specific
material.

Extensive testing of these “less fundamental” methods
must always be carried out. Here again ab initio calculations
may be used for benchmarking of these approaches check-
ing, for example, their results for simple configurations not
used in the potential construction and showing us the limits
of their reliability and accuracy.

Ab initio electronic structure calculations are indispens-
able when a phenomenon studied is controlled directly by
the electronic structure and cannot be captured by common
interatomic potentials. Behaviour of magnetic materials un-
der large deformation studied in this paper or magnetism of
grain boundaries constitute such examples.

The calculated values of the theoretical strength and other
quantities may serve as input parameters to quantitative mod-
els employing standard dislocation theory, that describes the
relationship between the yield behaviour and length-scale
effects in the nanoscale regime. Such models will comple-
ment and enhance the strain gradient models of continuum
mechanics dealing with deformation of materials subject to
inhomogeneous loads on nano- and microscale. This com-
bined approach will contribute to a deeper understanding of
the onset of yielding in nanoindentation and of some other
aspects of deformation in materials subject to large inhomo-
geneous loads.

In general, to attain the full understanding of phenomena
studied, it is often imperative to combine simpler methods
with ab initio calculations on one side and experiment on
the other. This approach is more and more applied in mul-
tiscale modeling of materials[101–103]. One of the main
goals of such activities is to develop predictive methods and
algorithms to understand properties of materials, including
their strength, plastic behaviour and fracture.
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[77] M. Černý, M. Šob, J. Pokluda, P. Šandera, J. Phys.: Condens. Matter

16 (2004) 1045.
[78] D.M. Clatterbuck, C.R. Krenn, M.L. Cohen, J.W. Morris Jr., Phys.

Rev. Lett. 91 (2003) 135501.
[79] M. Šob, L.G. Wang, M. Friák, V. Vitek, in: M. Cross, J.W. Evans,

C. Bailey (Eds.), Computational Modeling of Materials, Minerals,
and Metals Processing, The Minerals, Metals and Materials Society,
Warrendale, PA, 2001, pp. 715–724.

[80] J.W. Morris Jr., C.R. Krenn, D. Roundy, M.L. Cohen, in: P.E.A.
Turchi, A. Gonis (Eds.), Phase Transformations and Evolution in
Materials, The Minerals, Metals and Materials Society, Warrendale,
PA, 2000, pp. 187–207.

[81] J. Pokluda, P. Šandera, in: T. Prnka, (Eds.), Proceedings of the
Ninth International Metallurgical Conference METAL 2000, Tanger,
Ostrava, Czech Republic, May 16–18, 2000.

[82] J. Pokluda, P. Šandera, M.Černý, M. Šob, in preparation.
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