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Abstract

The Schmid law, which is accurate for face-centered-cubic (fcc) metals, assumes that only the shear stress acting in the slip plane in the
slip direction controls the plastic deformation. Hence, it is implicitly assumed that the critical resolved shear stress (CRSS) for the slip is not
affected by any other components of the applied stress tensor. This rule is almost ubiquitously utilized in large-scale continuum computations
of plastically deforming single and polycrystals. On the other hand, in materials with more complex structures and for some orientations of
the dislocation line the cores can spread onto several non-parallel planes. The most widely-known example is the screw dislocation in bcc
metals, though this phenomenon is quite universal in structures that are not close packed. Signatures of such core configurations commonly
include unexpected deformation modes and slip geometries, strong and unusual dependence of flow stresses on temperature and strain rate, a
high Peierls stress, and, in general, a breakdown of the Schmid law. In this paper, we first summarize results of atomistic computer simulations
of the response of 1/2〈1 1 1〉 screw dislocations to the applied shear stresses. The calculations have been made using central-force many-body
potentials and tight-binding based bond-order potentials for molybdenum. While the core structure found is not the same for the two descriptions
of atomic interactions, both lead to a very similar orientation dependence of the critical resolved shear stress for the dislocation motion which
takes place along the most highly stressed{1 1 0} plane. This dependence reveals the break down of the Schmid law invoked by the effect of
shear stresses acting in another{1 1 0} plane, which are called non-glide stresses. These results are then transferred to macroscopic level by
formulating single crystal yield criteria that include the effects of non-glide components of the stress tensor. These criteria form a basis for
multislip yield criteria and flow relations for continuum analyses. Using this approach we demonstrate that the effects of non-glide stresses
that have their origin at the level of individual dislocations also have significant effect on polycrystalline response, including a significant
tension-compression asymmetry.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Increasingly, three-dimensional (3D) simulations involv-
ing large plastic deformations are being integrated into both
the design process of metallic materials and the design and
manufacturing of components that support a wide range
of technologies. Examples include powder and deformation
processing and components ranging from turbine blades to
microelectronic packages to name a few. Both Lagrangian
and Arbitrary Lagragian–Eulerian finite element implemen-
tations are the basis for commercial codes. However, the
physical basis of the models, specifically the yield criteria
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that enter simulation codes for inelastic flow, are nearly al-
ways based on the Schmid law[1–4]. This law states that
glide on a given slip system, defined by a slip plane and
direction of slip, is controlled by the resolved shear stress
on that system, the Schmid stress, and in a rate-independent
formulation commences when this stress reaches a criti-
cal value[5] (see also[6]). Implicitly, other components of
the stress tensor and, for well-annealed crystals, the sign of
stress, play no role in the deformation process. Materials in
which this law always applies possess close-packed struc-
tures, which primarily includes face-centered-cubic (fcc) and
hexagonal close packed (hcp) materials when the glide is
restricted to basal planes. The reason is dissociation of dis-
locations into Shockley partials that keeps them confined to
the close-packed planes for every orientation of the disloca-
tion line and, therefore, they possess planar core structures.
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On the other hand, in materials with more complex and
open structures the cores may spread into several non-
parallel planes for some orientations of the dislocation
line. Such core structure may then very significantly affect
the macroscopic plastic flow. Common signatures of such
effects are: unexpected deformation modes and slip geome-
tries; strong and unusual dependence of flow stresses on
crystal orientation and temperature; and, most significantly,
a break down of the Schmid law (for reviews, see[7–11]).
A general reason for the break down of the Schmid law is
the impact of thenon-glide stresses upon the dislocation
motion via their influence on the dislocation cores. These
stresses are usually shear stresses acting either in the di-
rection of the Burgers vector in a plane other than the slip
plane, or perpendicular to the Burgers vector; the latter
cannot induce dislocation motion but can alter the disloca-
tion core. The most prominent example of materials in this
category are body-centered-cubic (bcc) metals[8,9,12–15],
but the class of such materials is much broader and includes
intermetallic compounds[7,9,10,16–18], oxides and semi-
conductors[11,19–24] and even organic and geological
materials[25–27].

These non-planar atomic core configurations generally
give rise to a unique stress-state dependence of flow prop-
erties that can significantly affect critical phenomena such
as strain localization, evolution of the texture of grains,
and failure mechanisms at mesoscopic and macroscopic
length scales. An understanding of the stress-state depen-
dence exists in the case of fcc metals[1–3,28,29]and some
close-packed compounds[4,17,30,31], but essential infor-
mation is usually lacking in models and simulations for
non-close-packed materials. This information is the exact
tensorial nature of the stress-state dependence of plastic
flow that originates at the level of individual dislocations,
which then projects into flow relations for realistic simula-
tion of the plastic response of single crystals, polycrystals
and, ultimately, components made from such materials.

In bcc transition metals the break down of the Schmid
law arises from the non-planar spreading of the cores of
1/2〈1 1 1〉 screw dislocations that is generally regarded as
controlling many important features of slip in these materi-
als[8,9,12–15,32–34]. Two distinct deviations from Schmid
law can be identified. First, the critical resolved shear stress
(CRSS) for slip may depend on the shear stress in the slip
direction acting in different planes of the core spreading that
could be alternative slip planes. Secondly, the CRSS may be
influenced by other components of the applied stress tensor,
in particular shear stresses in the direction perpendicular to
the Burgers vector[34–38]. In the present paper, we focus
only on the effect of shear stresses in the slip direction act-
ing on planes into which the core spreads. In the case of the
1/2〈1 1 1〉 screw dislocation these are three{1 1 0} planes of
the 〈1 1 1〉 zone.

The dependence of the CRSS on the orientation of the
maximum resolved shear stress plane (MRSSP) was studied
by atomistic modeling of the glide of the 1/2〈1 1 1〉 screw

dislocation using several different methods for description
of atomic interactions in transition metals. We concentrate
here on molybdenum for which such study was made using
central-force many-body potentials[38], potentials based
on a modified generalized pseudopotential theory (MGPT)
[39–41], screened bond-order potentials[42–45] as well as
an ab initio pseudopotential plane-wave method within the
local-density approximation of the density functional theory
[46,47]. While the details of the core structure are not the
same in these calculations the calculated dependence of the
CRSS on the orientation of the MRSSP is very similar in all
cases. This dependence demonstrates the breakdown of the
Schmid law arising from the effect of shear stresses acting
in the three{1 1 0} planes that contain the [1 1 1] direc-
tion and comprises the well-known twinning–antitwinning
asymmetry of slip observed in bcc metals (see, e.g.
[8,14]).

Using a continuum framework for the effects of non-glide
stresses[30,31] that was employed earlier in the case of
Ni3Al [4,17], we construct the yield criterion that can ac-
curately reproduce the stress-state dependence found in
the atomistic simulations for molybdenum. This criterion,
which captures the slip characteristics arising from the
atomic structure and properties of dislocation cores, is then
employed in a Taylor-type calculation for uniaxial stressing
of a random polycrystal of bcc grains with 12{1 1 0}〈1 1 1〉
slip systems. This calculation demonstrates that a signif-
icant non-Schmid effect, including a tension-compression
asymmetry, results at the polycrystal level. Moreover, earlier
studies[4] have shown that hardening can further amplify
the effects of non-glide stresses in polycrystals. These find-
ings illustrate indubitably that the stress-state dependence
of plastic flow, which originates at the level of individual
dislocations, projects all the way to the plastic behavior
of polycrystals. The understanding and characterization of
these aspects of plastic behavior require multiscale mod-
eling involving atomic level simulations on the scale of
nanometers to provide input into continuum calculations on
the scale from microns to meters.

2. Atomistic simulations of screw dislocations in
molybdenum

Many experimental and theoretical studies performed in
the last 40 years have established beyond doubt that the
1/2[1 1 1] screw dislocations control the essential aspects
of the plastic deformation of bcc metals, specifically the
temperature and stress-state dependence of plastic flow (for
reviews, see[7–9,14,15,33]). The most prominent charac-
teristic of these dislocations is their core which spreads into
several non-parallel planes of the [1 1 1] zone, as first rec-
ognized by Hirsch[32], and confirmed by many atomistic
studies that all find the core spreading into three{1 1 0}
planes intersecting along the [1 1 1] direction. Earlier calcu-
lations, which employed pair-potentials to describe atomic
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interactions, always found that the core is asymmetrically
spread into three{1 1 0} planes, similarly as inFig. 1a;
[48–50]. Since this core structure is not invariant with re-
spect to the [1 0̄1] diad, a symmetry operation of the bcc
lattice, another energetically equivalent configuration exists
in which the spreading of the core into three{1 1 0} planes
is found on the other side relative to the line of their inter-
section. This core structure is, therefore, called degenerate.
However, in recent calculations both the degenerate core
and the non-degenerate core, which is spread symmetrically
into the three{1 1 0} planes of the [1 1 1] zone, were found.
An example of the latter is shown inFig. 1b. Which of these
two types of the core is found depends on the description of
interatomic forces and even when two alternate descriptions
represent the same material different core types may be
found.

In this respect molybdenum is probably a typical case and,
therefore, the material we will focus on in this paper. Using
many-body central-force potentials of the Finnis–Sinclair
type [51] constructed for molybdenum[52], the degenerate
core structure, shown inFig. 1a, was found in[37,38].1 The
same core structure was also found when using non-central
potentials based on a modified generalized pseudopotential
theory [39,40,53,54]. On the other hand,Fig. 1b shows
the core structure obtained in calculations employing the
recently developed screened bond-order potentials for
molybdenum[43–45]. The most important feature of these
potentials, which are based on the tight-binding approach
[42,55,56], is that they reflect the most significant quantum
mechanical aspect of bonding in transition metals, forma-
tion of directional bonds due to the unfilled d-band. Very
recently the same non-degenerate core structure in molyb-
denum was also found in ab initio calculations based on
the density functional theory[46,47,57]. Thus, at this stage
it is not possible to state definitively whether the core of
1/2[1 1 1] screw dislocations in molybdenum is degenerate
or non-degenerate. The non-degenerate core structure is
most likely the structure found in pure molybdenum since
it is predicted from state-of-the-art ab initio calculations.
However, it is important to keep in mind that alloying and
impurities that are always present in practice may modify
the interatomic forces sufficiently for the degenerate core to
arise. Indeed, an asymmetric (degenerate) spreading of the
screw dislocation core in molybdenum is consistent with
recent high-resolution transmission electron microscopy
observations[58].

However, it is not the details of the core structure but
rather the stress-state dependence of the Peierls stress of
the screw dislocations which is of principal importance for
physically correct formulation of the flow rules in bcc met-
als. The strategy for determination of the stress-state depen-
dence of yielding by atomistic simulations is demonstrated

1 A non-degenerate core structure was found for this type of potentials
for tantalum.

Fig. 1. Calculated structure of the core of the 1/2[1 1 1] screw dislocation
in molybdenum using: (a) central-force many-body potentials[38] and (b)
screened bond-order potentials[45]. (c) Orientations of all the{1 1 0} and
{1 1 2} planes belonging to the [1 1 1] zone. In these figures, the atomic
arrangement is shown in the projection perpendicular to the direction
of the dislocation line ([1 1 1]). The circles represent atoms within one
period without distinguishing that they are positioned in three different
layers separated by the distancea

√
3/2, wherea is the lattice parameter.

The pictures are all oriented such that the horizontal rows of atoms
correspond to(1̄ 0 1) planes. The component of the relative displacement
parallel to the Burgers vector (screw component) of the neighboring atoms,
produced by the dislocation, is depicted as an arrow between them. The
length of the arrows is proportional to the magnitude of the displacement
normalized by |a/6[1 1 1]|; the direction of the arrows represents the sign
of the displacement.
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Fig. 2. Definition of the angleχ the MRSS plane makes with the(1̄ 0 1)
plane.

here for the case of stressing by pure shear in the direc-
tion of the Burgers vector. Geometrically, this stressing can
be uniquely represented by the angleχ between the(1̄ 0 1)
plane and the maximum resolved shear stress plane, as de-
fined inFig. 2. For such loading the dislocation in molybde-
num moved along the(1̄ 0 1) plane for all anglesχ, but forχ
close to±30◦ when the average glide plane is either(2̄ 1 1)
or (1̄ 1̄ 2). The dependence of the critical resolved shear
stress on the MRSSP on the angleχ, calculated by atom-
istic simulations, is shown inFig. 3. In this figure, we dis-
play results obtained in[38] using central-force many-body
potentials, results of recent calculations employing SBOPs
[45] and also results of ab initio calculations from Refs.
[46,47] and calculations using MGPT potentials from Ref.
[41]. It is remarkable that although the core structure is de-

Fig. 3. Dependence of the CRSS on the angleχ in molybdenum calculated
using many-body central-force potentials of the Finnis–Sinclair (F–S) type
[38], screened bond-order potentials (SBOP)[45], MGPT potentials[41]
and by an ab initio method based on the LDFT[46,47].

generate in the case of central-force many-body and MGPT
potentials and non-degenerate in the case SBOPs and ab
initio calculations (seeFig. 1), the MRSSP versusχ depen-
dencies are similar. The reason is that both types of cores
are being altered similarly by the applied stress. This is ap-
parent fromFigs. 4a and bthat show the core structure of
the 1/2[1 1 1] screw dislocation just before it starts to move
for central-force many-body potentials and SBOPs, respec-
tively. It is seen that the non-degenerate symmetrical struc-
ture transforms into an asymmetrical configuration akin to
that of the degenerate configuration.

The results summarized inFig. 3clearly demonstrate that
the Schmid law, which is also plotted in this figure for the
case when the slip plane is the(1̄ 0 1) plane, does not apply.
The reason is that other stress components than the Schmid
stress alter the core of the screw dislocation prior to its
motion, which is evident fromFig. 4. As discussed in the
following section, the stress components that enter the yield
criterion representing the results of atomistic studies shown
in Fig. 4, are shear stresses on(1̄ 0 1) and (01̄ 1) planes
and both these stresses appear in the yield criterion used in
both the continuum modeling of plasticity of both single and
polycrystals.

Fig. 4. Core structure of the 1/2[1 1 1] screw dislocation in molybdenum
under the effect of the applied shear stress in the(1̄ 0 1) plane (χ = 0◦).
(a) Many-body central-force potentials[38]; (b) screened bond-order po-
tentials[45].
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3. Continuum modeling of plastic flow in single crystals
of molybdenum

Continuum models for Schmid-type behavior (fcc and
basal slip in hcp) are all based upon the pioneering work
of Taylor [59] that has evolved to include capabilities for
simulations that account for finite shape change and lattice
rotations[1,3,4,29]. Qin and Bassani[30,31]have proposed
a framework for non-Schmid behavior and demonstrated
how important features of non-planar dislocation cores
in L12 intermetallic compounds, such as Ni3Al [17,60],
can be introduced into a rigorous finite-strain theory. This
theory captured the observed orientation dependence and
tension-compression asymmetry of the yield stress in the
regime of the anomalous increase of the flow stress with
temperature. At the same time it suggested significant con-
sequences of non-Schmid behavior for the formation of
localized shear bands, which are important in failure mecha-
nisms (for reviews, see[4,17], as well as for polycrystalline
response see following section).

Following the suggestion of Qin and Bassani[30,31], the
effects of non-glide stresses may enter the flow rules for slip
at the single crystal level such that theeffective yield stress,
τ∗α—which accounts for the effects of non-glide stresses for
slip systemα—is a linear combination of the Schmid stress
and other non-glide components of stress tensor:

τ∗α ≡ τα +
∑

η

aα
ητα

η (1)

whereτα is the Schmid stress for the slip systemα, τα
η are the

non-glide stresses affecting the slip systemα andaα
η are the

material parameters that determine the relative importance
of the different non-glide stresses (which can depend on the
deformation history and temperature); summation is over the
total number of non-glide components. The yield criterion
for each slip system is then

τ∗α = τ∗α
cr (2)

whereτ∗α
cr is the yield stress of slip systemα. If there is no

influence of non-glide stresses, this criterion reduces to the
Schmid law. In a rate dependent setting, a flow rule can be
formulated in the form:

γ̇α = γ̇0f

(
τα

τ∗α
cr −∑

η aα
ητα

η

)
(3)

where the functionf needs to be determined from the dislo-
cation mobility studies. The atomistic simulations provide
the basis for determining the possible slip planes and the
important non-glide stress components. Furthermore, from
the atomistic simulations of the motion of individual dislo-
cations we directly determineτ∗α

cr and the coefficientsaα
η .

Based upon the results of atomistic calculations of the
CRSS versusχ employing central-force potentials for
molybdenum[38], shown inFig. 3and reproduced inFig. 5,
we have determined that the important non-glide stress

Fig. 5. Dependence of the CRSS on the angleχ in molybdenum calculated
using many-body central-force potentials of the Finnis–Sinclair (F–S) type
[38] and yield criterion given byEq. (4).

component is the shear stress acting parallel to the Burgers
vector in the(01̄ 1) plane; the slip plane is(1̄ 0 1). The full
curve inFig. 5 is based upon the yield criterion

τ∗ = τ(1̄ 0 1) + aτ(01̄ 1) = τ∗
cr (4)

with a = 0.641 andτ∗
cr/C44 = 0.029. The corresponding ta-

ble of crystallographic tensors that suffices for shear parallel
to the Burgers vector has been fully determined (and used
in the Taylor-type calculation for polycrystals presented be-
low). We note that single crystal flow rules can be readily
coupled with the hardening relations in the form of Wu et al.
[61] or Cuitiño and Ortiz[62] or the strength relations of
Arsenlis and Parks[63].

4. Polycrystalline response

In this section, we demonstrate that the effects of non-
glide stresses that have their origin at the level of individual
dislocations also have significant effect on polycrystalline re-
sponse. We have very recently formulated a novel quadratic
programming problem for non-Schmid behavior at the sin-
gle crystal level that allows us to perform a Taylor-type
calculation for textured polycrystals (an upper bound for
non-hardening behavior)— details will be reported else-
where. Here, we consider a random polycrystal of bcc grains
with 12 {1 1 0}〈1 1 1〉 slip systems for which the yielding
of each system is defined by an equation of the form of
(4), with τ∗α

cr = τ0 taken to be the same on each system.
For the case of uniaxial stressing of the polycrystal, the de-
pendence of the macroscopic uniaxial tensile flow stressσ̄,
normalized by the critical hardness of each slip system, is
plotted inFig. 6as a function of the non-glide-stress param-
etera. These results show a significant non-Schmid effect at
the polycrystal level including a tension-compression asym-
metry. Note, that for this material model, the Taylor factor,
equal to 3.07 for Schmid type behavior (a = 0), decreases
nearly linearly with increasinga and is reduced to 2.46 in
tension fora = 1 and a significantly smaller value in com-
pression. Clearly, non-glide stresses also affect the overall
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Fig. 6. Macroscopic uniaxial tensile flow stress (a) and its tension-
compression asymmetry (b) for a random bcc polycrystal as a function
of the strength of the non-glide stress effect at the slip system level char-
acterized bya. a = 0 corresponds to the classical Taylor factor of 3.07
times the slip-systems yield stress for Schmid type behavior.

Fig. 7. Two-dimensional plane stress yield surfaces for a random poly-
crystal: inner locus corresponds to the bcc model witha = 0.6 and the
outer locus toa = 0 (Schmid behavior). Stresses are normalized by the
critical stress on each slip system,τ0.

yield surface for polycrystals as shown in plane stress sur-
face presented inFig. 7. The inner locus is the result for a bcc
material witha = 0.6 (which approximates molybdenum)
and outer locus is the Taylor–Bishop–Hill result for Schmid
behavior which is approximately the von Mises ellipse. The
degree of change in shape of the yield surface is known to
have a significant effect on strain localization, limits to duc-
tility and failure. Hence, the effects of non-glide stresses,
which have their origin in the dislocation core structures,
may, indeed, have significant effects on material behavior at
the polycrystalline level.

5. Conclusions

We have demonstrated a powerful methodology that
builds upon atomistic simulations of dislocation behavior
to develop a physically-based continuum theory of crystal
plasticity incorporating the effects of non-glide components
of the shear stress. This paper has focused on bcc metals, but
the phenomenon of stress-state dependence of the Peierls
barrier is found in a wide range of materials for which
dislocations, most frequently screw dislocations, possess
non-planar core structures. The effects of non-glide stresses
have been incorporated into a full, three-dimensional con-
tinuum theory of multiple slip in bcc crystals. The impli-
cations are not only striking at the single crystal level, but
significant effects also are predicted at the polycrystalline
level. Further studies are underway to explore more general
states of stress and other materials.
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