News Archives

Robert Maddin: A Founding Father of the LRSM

Robert Maddin, one of the four founders of the LRSM, died on March 3, 2019 at age 100. Bob was born in Hartford CT in 1918. He graduated from Yale with a doctorate in engineering in 1948, and he joined the Metallurgy department at Penn in 1955, just after it formed, as Professor of Metallurgy and Director of the School of Metallurgical Engineering, a position he held until 1972. In January, 1973 he was appointed University Professor, a position he held until his retirement in 1983. Along with Eli Burstein, Robert Hughes, and Norman Hixson, he was responsible for the creation of the LRSM in 1960. He was a member of the LRSM Executive committee and was well known for his work on mechanical properties, phase transitions, and defects in metal single crystals, alloys, and metallic glasses. He was also department chair of Materials Science and Engineering (formerly Metallurgy) from 1972-83. In 1983 he joined Harvard as a professor of Anthropology, worked on ancient metallurgy, and was also a curator in the Peabody Museum. The LRSM will continued to honor and remember him, as it has for many years, through sponsorship of the Maddin Lectures which bring prominent materials researchers to Penn.


Christopher B. Murray Elected to the N.A.E.

We congratulate Christopher Murray, Richard Perry University Professor and Professor in the Departments of  both Materials Science and Engineering, and Chemistry as a Penn Integrates Knowledge faculty member. Chris has just been elected to the National Academy of Engineering (NAE) “for invention and development of solvothermal synthesis of monodisperse nanocrystal quantum dots for displays, photovoltaics, and memory.” Chris is an intellectual leader in the MRSEC, especially as a core contributor to both of our nanocrystal IRGs during the last two funding cycles (links below).  Chris has also been a strong participant in our education and outreach efforts, including the PREM program with the  University of Puerto Rico. His scientific contributions include (but are not limited to) the development of nanocrystalline materials broadly defined, for example the creation of “artificial atoms” — nanocrystals or quantum dots — that self-assemble into devices with completely new multi-functionalities.

IRG3: Pluperfect Nanocrystal Architectures
IRG4: Controlled Function in Inter-dimensional Materials (2011-17)

news release

Former LRSM Director, Donald N. Langenberg, Passes, January 25, 2019

Donald Newton Langenberg (image taken at the LRSM 50th Anniversary Symposium, 2012)

The LRSM recently lost an old friend and former Director, Don Langenberg, who passed away on January 25, 2019 at age 86. Don joined the Physics department at Penn in 1960, where he specialized in low temperature solid state physics, specifically focusing on electronic band structure in metals and semiconductors. He later carried out classic experiments on quantum phase coherence and non-equilibrium effects in superconductors for which he became a world authority. In 1972 he became director of the LRSM. This was an important time, in part because the source of LRSM funding was changing from ARPA to NSF. Don led the effort to garner our first major center funding from the NSF, through the so-called Materials Research Lab (MRL) program. The LRSM Director position, which he carried out with aplomb, was his first foray into administration and represented the beginning of a highly successful transition to administration (broadly defined). In 1974 he was appointed vice-provost for graduate studies and research at Penn and from 1974-77 was member of the Advisory Committee on Research of the NSF. From 1975-80 he was a Trustee of Associated Universities before becoming Acting Director of the NSF, 1980, and Deputy Director 1980-82. In 1983 he became Chancellor of the University of Illinois, Chicago, 1983-1990, and then Chancellor of the University of Maryland System, 1990-2002, after which he became Chancellor Emeritus on his retirement.

Among Don’s other achievements: he was a Trustee of Penn ,1990-2000, President, American Association for the Advancement of Science,1991, Chair, Board of Directors, National Association of State Universities and Land-Grant Colleges, 1991, and President of the American Physical Society, 1993. Other awards he has received include the John Price Wetherill Medal of the Franklin Institute and the Distinguished Contribution to Research Administration Award of the Society of Research Administrators, in addition to honorary degrees from several universities.

more information

Mele & Kane Winners of the 2019 Breakthrough Prize

Physicists Eugene Mele and Charles Kane of the School of Arts and Sciences are being recognized for their innovative work on topological insulators. Kane and Mele have been named winners of the 2019 Breakthrough Prize in Fundamental Physics and will share the $3 million award “for new ideas about topology and symmetry in physics, leading to the prediction of a new class of materials that conduct electricity only on their surface.”

Kane, the Christopher H. Browne Distinguished Professor of Physics, and Mele, also Christopher H. Browne Distinguished Professor of Physics, both in the Department of Physics and Astronomy, have long collaborated, sharing ideas and predictions in their field of condensed matter physics. Their theoretical contributions introduced a new class of materials known as topological insulators. These materials have the unique characteristic of being electrical insulators on their interior, but have surfaces that are unavoidably conducting.

more: Penn Today news item on Kane & Mele accepting their award.
related: BBVA Foundation Frontiers of Knowledge Award

news release

State-of-the-Art X-ray Scattering Instrument

In the Spring of 2018, a a brand new instrument for measurements, funded by an NSF-MRI grant with matching support from LRSM and SEAS (and additional building renovations funded by SAS, SEAS, and the Provost) was installed in the LRSM.

The DEXS instrument (“Dual Source and Environmental X-ray Scattering”) incorporates a Xeuss 2.0 small-angle system with Cu and Mo X-ray sources and adjustable sample-detector distances from 7 cm to 6.3 m. This provides scientists with an unprecedent capability to measure structures of materials from the subnanometer to the micron scale on the same instrument. Once the sample is placed in the instrument, all aspects of the measurement are computer-controlled, including collimation and choice of source. The DEXS instrument is also equipped with a wide variety of sample environments and special configurations, including controlled temperature, humidity, grazing incidence, and measurements under tension.

The instrument was commissioned and tested during the summer of 2018, and is now being used by research groups in Materials Science, Physics, and Chemistry, as well as outside academic and industrial users. Anticipated applications of the research being conducted using this instrument include nanoporous metals for energy storage, nanocrystals for light harvesting, polycarbonates in ionic liquids with tunable chemical reactivity, and a variety of others.

$500K Award for New SUPERSeed

The NSF awarded the Penn MRSEC funding ($500K) for a brand new SUPERSeed, entitled Membraneless Organelles with Designed Function from Engineered Assemblies of Intrinsically Disordered Proteins. The objective of the SuperSeed is to construct genetically-encoded materials that predictively self-assemble into micron-size liquid condensates in vitro, and in cells via coacervation of intrinsically disordered proteins (IDPs). The SuperSeed is led by Matthew Good (Cell and Developmental Biology, Bioengineering) and Elizabeth Rhoades, (Chemistry). They will be collaborating with Daniel Hammer and Daeyeon Lee (Chemical and Biomolecular Engineering) and Jittain Mittal (Lehigh University). The proposed studies leverage team expertise on intrinsically disordered proteins and principles of molecular self-assembly to construct mesoscale structures inside living cells. By integrating computational design and experimentation this team will develop rules that govern the assembly of nanoscale IDPs into organelles. Additionally, synthetic organelles will be engineered to sense the environment and regulate cellular decision-making, thereby mimicking and extending the rules of life that underlie cellular organization. This Penn collaboration was among the winners of  highly competitive summer SuperSeed competition spanning all MRSECs (34 submissions).

Charles Kane and Andrew Rappe Identify New Insulating Material

Charles Kane and Andrew Rappe were part of a team that identified a new class of insulating material that has a conducting surface. The surface is stabilized by a pattern of symmetry similar to the pattern on an ordinary piece of wallpaper. Using a combination of analytical and computational techniques, the team predicted that Sr2Pb3 is a topological Dirac insulator and computed the special features of its surface states. The work, published in Science, is the latest in a string of interdisciplinary successes by this integrated Topological Science Seed project team of the MRSEC. The LRSM has supported the seed, with the goals of establishing new principles in the burgeoning field of topological physics, and translating these principles to real materials.

news release

MAXS Facility helps pave the way for safer smaller batteries and fuel cells

A recent study, published in the journal Nature Materials, suggests a new and versatile kind of solid polymer electrolyte (SPE) that already has twice the proton conductivity of the current state-of-the-art material. It was led by Karen I. Winey, TowerBrook Foundation Faculty Fellow, professor and chair of the Department of Materials Science and Engineering, and co-supervisor of the LRSM’s Multiple Angle X-ray Scattering (MAXS) facility.

This publication is the result of 10+ years of structural characterization of precise polyethylenes made possible by the MAXS facility.  MAXS was designed to incorporate a broad angular range to capture structural features from 0.26 to 80 nm, which is particularly important for acid- and ion-containing polymer that self-assemble into hierarchical structures.

news release

Jason Burdick Named the Robert D. Bent Professor of Bioengineering

Congratulations to Jason Burdick who has been named the Robert D. Bent Professor of Bioengineering. Jason participates in our MRSEC grant as a member of the Interdisciplinary Research Group (IRG) on Structural Chemo-Mechanics of Fibrous Networks in which he works on strain reinforcing fibrillar materials. Jason has been a Bioengineering faculty member since 2005. 

read article

Vivek Shenoy Named the Eduardo D. Glandt President's Distinguished Professor in SEAS

Congratulations to Vivek Shenoy, who has been named the Eduardo D. Glandt President’s Distinguished Professor in SEAS. Vivek is co-leader of our Interdisciplinary Research Group (IRG) on Structural Chemo-Mechanics of Fibrous Networks. He is a theorist who studies mechanisms of plastic deformation in collagen networks, among other materials. Vivek has been a faculty member in the Department of Materials Science and Engineering since 2012. He also serves as the director of the NSF Science and Technology Center for Engineering Mechanobiology.

read article

Shu Yang, with IRG3, are Making Atomic Thin Nanosheets Stand Up for Better Energy Storage

In a paper published in Nature, faculty from IRG3: Pluperfect Nanocrystal Architectures reports a fundamentally new and scalable approach to prepare electrodes from atomic thin 2D nanosheets in the vertical orientation via self-assembly. The method beautifully marries soft matter assembly and functional hard nanomaterials by creating a coherent and long-range ordered liquid crystal phase of 2D sheets of titanium carbide, Ti3C2, a member of the MXene family. The resulting electrode films show rapid ion diffusion in thick films, exhibiting unprecedented energy storage performance, retaining almost 100 % of the capacitance after 20,000 cycles of galvanostatic cycling at a rate of 20 A/g, and nearly thickness-independent (up to 200 micrometers, or 0.2 mm), a thicknesses equal to or exceeding that of commercial electrodes.

press release

Philadelphia Science Festival 2018

LRSM graduate students, post-docs, and faculty hosted interactive exhibits at the Philadelphia Science Festival’s Science Carnival, on the Benjamin Franklin Parkway on Saturday, April 28, 2018.  This free, final event of the festival, engaged people of all ages about fields of science. This year, the LRSM sponsored two interactive exhibits at the Science Carnival: “How does levitation work?” run by the Yodh soft matter group, and “Can you move a train with magnets?” run by the Jariwala group from electrical engineering (see full list of volunteers below). The LRSM has participated in the Science Festival since 2011, its inaugural year.   Literally tens of thousands of interested people attended the all-day Carnival.


“Can you move a train with magnets?”

Ravindra Saxena (Masters student, Nanotechnology)
Stefano Roccasecca (Undergraduate student, Physics)
Akshaya Venkatakrishnan (Masters student, Nanotechnology)
Deep Jariwala (Professor, ESE)

“How does levitation work?”

Sophie Ettinger (PhD student, Physics)
Analisa Hill (PhD student, Physics)
Chandan Kumar Mishra (Post doc, Physics)
Alexis de la Cotte (Post doc, Physics)
Xiaoguang Ma (Post doc, Physics)
Arjun Yodh (Professor, Physics)

read more

8th annual Philly Materials Science and Engineering Day

Saturday, February 3rd, 2018 saw the 8th annual Philly Materials Science and Engineering Day, a day-long festival hosted by Drexel University Materials Science department and the Penn MRSEC. This event has been held annually since 2011 with an average annual attendance of approximately 1,000 people. This year, volunteers taught Materials Science concepts to elementary and middle school-aged students and their families with hands on demonstrations and workshops. For example, MSE professor Eric Stach performed feats of levitation using high temperature superconductor materials while PhD candidate Lisa Mariani, from Kevin Turner’s MEAM lab, explored soft materials’ properties using everyday materials like strips of scotch tape. Nearly half of the Philly Materials Day demo tables were staffed by 65 graduate students, undergraduate students, and faculty from 12 LRSM-affiliated groups.

Other demonstrations included:

  • Magic Liquid Crystal: Is it a liquid or a crystal? (Shu Yang, MSE)
  • Tribology: principles of friction, wear and lubrication (Robert Carpick, MSE)
  • Chemical tools for tackling neurodegenerative disease (E. James Petersson, Chemistry)
  • Shrinky Dink Polymers (Karen Winey, MSE)
  • Bouncy Balls & Borax: Polymerizing Glue (Eric Schelter, Chemistry)
  • Diving Into Different Dimensions (Marija Drndic, Physics)
  • The surprising behavior of soft matter (Arjun Yodh, Physics)
  • Muggle Magic (Fakhraai, Chemistry)
  • Light and Color: From Molecules to LCD Screens (Lee Bassett, ESE)
  • Non-Newtonian Fluids (Steve Szewczyk, MSE)

Read the Penn Current Article

more information

IRG-1 Team Identifies Failure Signatures in Disordered Solids

In a paper published in Science, a team of faculty from IRG-1 (Rearrangements and Softness in Disordered Solids) identified fundamental new connections between microscopic structure and dynamic rearrangements in glassy materials. In this truly interdisciplinary and multi-scale work, the team tested new ideas about “softness” in 15 different experiments and simulations spanning materials whose constituent size spans 7 orders of magnitude, and whose mechanical stiffness spans 13 orders of magnitude.

Penn News Summary

read article

Principal of Condensed Matter: In Honor of Tom Lubensky

A special symposium, entitled ‘Principal of Condensed Matter: In Honor of Tom Lubensky’, took place at the LRSM November 3 and 4, 2017. Tom is a long-time and current member of the LRSM-MRSEC, and he is one of Penn’s leading theoretical physicists. He was awarded the APS Buckley Prize and is a member of the National Academy of Sciences, in part for his foundational contributions to soft condensed matter physics. The symposium featured lectures from fifteen of this field’s elite from all over the world leading off with a Quasi-crystal talk by Paul Steinhardt (Princeton), a former Penn faculty and LRSM member, and ending with an exciting talk about characterizing disorder by Paul Chaikin (NYU), a former graduate student, post-doc, and professor at Penn. In between were more speakers including Tom’s son, David, who presented new research in biophysics. The symposium drew well over 100 scientists including many former students, post-docs, collaborators, and friends. The symposium dinner was held at The Study in University City on Saturday evening. Details of the event can be found at

news release

Celebrating the Life and Contributions of an LRSM Founding Father

Approximately 75 colleagues gathered for an all-day memorial to celebrate the life and contributions of LRSM Founding Father, Elias (Eli) Burstein, who, along with Bob Maddin, Robert Hughes, and Norm Hixson, was the driving force in establishing the first academic, interdisciplinary materials lab in the USA in 1960 at Penn, and since then, the LRSM has garnered continuous center funding through 2023. The symposium event was held Friday, October 6, 2017, and featured stories about Eli’s life and scientific achievements from his students and post-docs, faculty colleagues, current and former LRSM directors, and family friends.  The event concluded with a dinner in the Singh Center for Nanotechnology attended by Eli’s wife, Rena, and family. Eli was a man of great stature in the physics community, both at Penn and throughout the world. He died in his 100th year on June 17, 2017.

more information

LRSM Awarded 2017-23 NSF Materials Research Science & Engineering Center (MRSEC)

The Laboratory for Research on the Structure of Matter (LRSM) has been awarded a six-year, $22.6 million center grant from the National Science Foundation to support LRSM’s work in cutting-edge materials. The new MRSEC, one of eight selected nationwide, provides crucial support for LRSM’s education and outreach missions, its shared experimental facilities, and the research of three new interdisciplinary research groups (IRGs).

more information

Lisa Tran Takes Fifth Place in the Nikon Small World Competition

This video is of cholesteric liquid crystal double emulsions, with water in the inner and outer phases, and cholesteric liquid crystal in the middle phase. The inner water phase has excess salt, which causes the emulsion to swell over time, thinning out the liquid crystal shell. Surfactant is added into the outer water phase, and as the surfactant absorbs onto the liquid crystal-water interface, the cholesteric responds to the surfactant by forming stripes on its surface. The stripes continue to evolve as the shell thins due to the emulsion swelling.

news release

more information

Collaboration demonstrates a new amorphous packing of organic molecules

Stable glasses, disordered solids, are prepared by depositing molecules from a vapor phase onto a cold substrate. Stable glasses are typically birefringent, meaning that the index of refraction of light is different in the directions parallel and normal to the substrate. In most systems this is a result of molecules aligning in a particular direction as they condensate from the vapor phase into a deep glassy state. As such, if a molecule is spherically shaped, one would not expect to observe birefringence.

In a new study, Penn researchers Zahra Fakhraai, Patrick Walsh, James Kikkawa, and Joseph Subotnik designed a spherically shaped molecule and demonstrated that despite its round shape, the molecule can produce birefringent glasses upon vapor deposition. Through a series of experiments, graduate students Tianyi Liu and Annemarie Exarhos demonstrated that the birefringence in this system is due to the layer by layer nature of the deposition that allows molecules to pack more tightly in the direction normal to the surface during the vapor deposition. The denser the glass, the higher the value of birefringence. This process can be controlled by changing the substrate temperature that controls the degree of densification. This novel amorphous packing provides an opportunity to reveal fundamental properties of glasses at low energy states, a long standing question in solid state physics. This study was funded by National Science Foundation grants DMR-11-20901, DMR-1206270, CHE-1152488 and DMREF-1628407.

news release

LRSM Science Camp Expands Opportunities for Philadelphia Middle Schoolers

Since 2011, 7th grade students from Girard College, a boarding school for low-income students from single-parent homes, have spent a week at the LRSM learning about science, technology, engineering, and materials. This summer, for the first time, students from the Pennsylvania School for the Deaf joined the camp. In addition to science and college exposure, this new partnership created novel opportunities for students from both schools to form friendships across lines of difference.

news release

Alison Sweeney Identifies How Squid Have Evolved to See in Dim Ocean Water

Alison Sweeney, Paul Heiney, postdoc Jing Cai and graduate students James Townsend and Tom Dodson of the School of Arts & Sciences have provided a detailed look into how self-assembled lenses allow squid to see in the dim waters of the ocean. This may one day allow researchers to understand the fundamental principles of self-assembly and to engineer better nanomaterials.

press release

Ultra-Small-Angle to Wide-Angle Dual Source X-ray Scattering Instrument for SEF

The X-ray scattering shared experimental facility (SEF) within the LRSM is about to undergo a dramatic transformation via purchase of a Xeuss 2.0 from Xenocs.  Briefly, the new instrument provides structural information at both high and low spatial resolution across a wide range of length scales (0.09 to 600 nm) and thus facilitates study of hierarchical structures in a wide range of hard and soft materials. Further, by incorporating dual sources (Cu and Mo), two solid-state detectors, a stage for grazing incidence, and various sample environments for in situ and operando studies, we anticipate that the impact of this new instrumentation on local materials research and education will be immense. The instrument will advance research on the synthesis, fabrication, processing, and assembly of a wide range of materials systems, and will provide crucial insight about structure relevant to their chemical, electrical, magnetic, mechanical, optical, thermal, and transport properties. The facility will also be integrated into courses at Penn, the outreach activities of the LRSM, and workshops and online training materials are planned to promote its broad use by beginners and to fully develop expert-users. 

This major investment was made possible by a recent NSF – MRI grant award (PI:  Yodh, co-PIs:  Detsi, Fakhraai, Heiney and Winey), with matching funds from the LRSM and Penn Engineering.  In addition, the detector will be further improved by resources derived from an ARO-DURIP grant (PI:  Winey)

more information

Penn Collaboration Produces Surprising Insights Into the White Spots on Butterfly Wings

A collaboration between biologists and materials scientists at the University of Pennsylvania is yielding new insights into the whiteness on the wings of the “skipper butterfly”, a dusk-active and shade-inhabiting Costa Rican rain forest butterfly. They identify two types of whiteness: angle-dependent and angle-independent. They speculate that the biological functions and evolution of Carystoides spot patterns, scale structures, and their varying whiteness are adaptations to the butterfly’s low light habitat and to airflow experienced on the wing base versus wing tip during flight.
Note that there is no pigment for “whiteness.” Indeed, structural whiteness is technologically important in systems ranging from power efficient computer displays, to sensors, to energy efficient buildings, windows, and vehicles.
news release

In Memory of Elias ‘Eli’ Burstein

The LRSM lost one of its most distinguished members, Elias ‘Eli’ Burstein, on Saturday, June 17, 2017.  He was 99 years old, only three months short of a century. Eli, Professor of Physics and Astronomy at Penn since 1958, was the grand old man of the Penn materials community. It was he, along with Bob Hughes, Chemistry, Bob Madden, Metallurgy, and Norm Hixson, Associate Dean of Engineering, who founded the LRSM in 1960, as an academically unique, interdisciplinary materials research laboratory. They obtained the first grants for the LRSM from the Department of Defense, and starting in 1972, the materials center has garnered funding support continuously from the National Science Foundation. Eli graduated from Brooklyn College in 1938 and took graduate courses at MIT and Catholic University, but his doctoral studies were interrupted by WWII, although he subsequently obtained four honorary doctorates. He retired in 1988 as Mary Amanda Wood professor of physics and remained active as professor emeritus until he died.

Eli was extremely prolific in a career that spanned seven decades. He did it all. He worked on fundamental studies of infrared photoconductivity in silicon and germanium, and he carried out ground-breaking research on semiconductors, insulators, metals, and two-dimensional electron plasmas in semiconductors. Much of this work improved our understanding of optical properties in the solid state. In his later years at Penn, Eli was known for his work on SERS, Surface-Enhanced Raman Scattering; these SERS ideas continue to influence researchers in present-day metamaterials. Finally, near the end of his career, Eli was deeply engaged in understanding optical properties of fullerenes (buckyballs) and other carbon structures.

Eli trained well over 40 graduate students and post-doctoral fellows, many of whom have had very distinguished careers of their own. He also encouraged dissemination of scientific knowledge by organizing international meetings, conferences, symposia, workshops, and through the literature as Founding Editor of the journal Solid State Communications, being editor-in-chief 1963-1992. Among his many honors, he was elected to the National Academy of Sciences (1979), and he received the John Price Wetherill Medal from the Franklin Institute, the Frank Isakson Prize from the American Physical Society, and a Guggenheim Foundation Fellowship. He was also a Fellow of the American Physical Society, the Optical Society of America, and the American Association for Advancement of Science.

At the LRSM, we have enjoyed his company at our annual “Burstein Lecture,” named in his honor. Eli is survived by his wife of 73 years, Rena, three daughters, Joanna Mitro, Sara Donna, and Mimi Burstein, and grandchildren, Graham and Susanna Mitro.  He will be missed.

If you are interested in learning more about Eli’s life, please explore the following links:
National Academy of Sciences Biographical Memoir of Elias Burstein

more information

18th Mid-Atlantic Soft Matter (MASM)

LRSM co-sponsored the 18th Mid-Atlantic Soft Matter (MASM) meeting at Penn, May 19, 2017. The meeting hosted local invited speakers from Georgetown University, Lehigh University, the University of Delaware, and the University of Pennsylvania. It also featured more than 60 contributed sound-bite talks largely from students and post-docs in the mid-Atlantic region. Doug Durian and Rob Riggleman organized the workshop.

more information

LRSM Co-founder Dr. Robert E. Hughes Passes at Age 92

Prof. Robert E. (Bob) Hughes, passed away on April 2, 2017, age 92, at his home in Virginia after a long and distinguished career. We knew him best as professor of Chemistry at Penn, from 1953-64 during which time he was instrumental in establishing the LRSM in 1960. Following DARPA’s request for proposals for an interdisciplinary materials research program in 1959, after the Soviet Union’s successful launch of Sputnik, he was appointed to a committee that included Robert Maddin, Metallurgy, Elias Burstein, Physics, and chaired by Norm Hixson, Associate Dean of Engineering, to write the successful grant proposal that funded the LRSM. One of the most controversial decisions to be made was that of naming the lab. Burstein wanted ‘condensed matter physics’ in the title and Maddin wanted ‘structure of materials’ in the title. Bob Hughes solved the problem by giving it the everlasting and somewhat grandiose title, the Laboratory for Research on the ‘Structure’ of ‘Matter’, thus satisfying both. He returned to the LRSM in 2012 to help celebrate the 50th anniversary of the lab and stated that he always loved his time at the University of Pennsylvania. On leaving Penn in 1964, he returned to his alma mater, Cornell, where he was director of their Materials Science Center from 1968 to 1974. Subsequently, he became the Assistant Director of the National Science Foundation (NSF) from 1974 to 1976 and President of Associated Universities Incorporated (AUI), which administered Brookhaven National Laboratory, from 1980 to 1997. Further details of his career can be found in his obituary at

more information

Penn Engineers Report First Colloidal Crystals with Diamond Structure

A long-standing goal in material science is to create a material with a complete photonic bandgap, in which light would propagate in a manner analogous to the flow of electrons in a semiconductor. This requires the creation of a very challenging three-dimensional microstructure: an ordered periodic array of highly refractive sub-micron particles arranged so as to mimic the structure of carbon atoms in a diamond crystal. It has long been an elusive goal to form such structures by self-assembly, for example using the ability of colloidal microspheres to spontaneously form into colloidal crystals. Penn researchers John Crocker and Talid Sinno lead an NSF funded project that forms novel colloidal crystals from polymer microspheres covered in interacting DNA strands, and which draws upon technology originally developed by an earlier MRSEC project. Their graduate student Yifan Wang serendipitously discovered the diamond structure crystals in recent experiments, and the results are published in Nature Communications. While significant challenges remain to turn the discovery into an bandgap material, self-assembling the diamond crystals is a significant breakthrough. The occurrence of the diamond crystals is unexpected theoretically, and forming them in simulation has also proven elusive; the team conjectures that the crystals form via the transformation of another, yet undiscovered parent crystal.

news release

Philly Materials Science and Engineering Day 2017

This year marked the 7th annual Philly Materials Science and Engineering Day, held on February 4th, 2017. Through a collaboration between the Penn MRSEC and the Penn and Drexel University Materials Science departments, the day-long event promotes materials research to local K-9 students with tabletop demonstrations and workshops. In all more than 20 LRSM-affiliated graduate students & post-docs volunteered at the event, which draws over 1000 attendees each year.

web page

MRSEC SEED Project Builds Simple Microrobots Powered by DNA

An emerging approach to building microrobotic devices is to fabricate thin film devices that then curl and fold themselves into complex three-dimensional and dynamic shapes, termed microorigami.  DNA is superior to other materials that use temperature or pH to control such shape actuation; by using different DNA strands many different motions can be controlled independently, enabling sequential folding or complex robotic actuations. MRSEC postdoc Tae Soup Shim created the first microorigami devices formed from and powered by DNA, working in the labs of John Crocker and Daeyeon Lee, with advice from David Chenoweth and So-Jung Park.  The work was recently published in Nature Nanotechnology. By combining photolithography and DNA-based assembly techniques, they could create thousands of identical micromachines in water that can change their shape in seconds when commanded by the addition of DNA strands to solution.  These machines demonstrated the ability to flip themselves over synchronously in a controlled manner, such that they all faced ‘up’ or ‘down’ on command.  Such functionality required two independently controllable types of DNA ‘muscles’, and would would have been difficult or impossible with earlier microorigami materials.  The researchers hope to build still more complicated and capable soft microrobots to interface with biological systems.

news release

2016 MRSEC Education Directors Meeting

The Penn MRSEC hosted a one-and-a-half-day meeting of 27 MRSEC education directors and their staff from 20 (of 21) NSF-supported MRSECs across the USA.  The program was organized by Nevjinder Singhota, Cornell, the organization chair, and was held here at the LRSM on November 3rd & 4th, 2016.

more information

PKU-Penn Joint Symposium on Molecular Science Frontiers

LRSM co-sponsored and helped initiate the first PKU-Penn Joint Symposium on Molecular Science Frontiers. The event took place at Peking University, Beijing China, July 11-13, 2016. The Symposium covered a wide range of topics from chemistry to physics to materials science and biochemical engineering. Besides scholarship, the workshop helped to developed new synergies between Penn and PKU. Eleven faculty with LRSM affiliation spoke at the Symposium.

Dan Beller, Kamien Group Alum, Wins 2016 Glenn Brown Prize

Dan Beller, Physics and Astronomy alum, won the 2016 Glenn Brown prize from the International Liquid Crystal Society

The Honors and Awards Committee of the ILCS selected Dr. Beller for his thesis work:

For his outstanding theoretical work to identify the rich possibilities and outcomes of controlling defects in nematic and smectic liquid crystals under a variety of boundary conditions.  The demonstration of the well controlled disclinations and focal conics is expected to open up a novel route for self-assembly in soft-ordered materials.

You can read more about the prize on the ILCS website:

more information

Sweeney Lab Sheds Light on Squid Invisibility

As reported in National GeographicAlison Sweeney and post-doc Amanda Holt of Arts & Sciences showed how a transparent squid uses natural fiber optics as camouflage.  

read article

First Transistors Made Entirely of Nanocrystal ‘Inks’

The transistor is the most fundamental building block of electronics, used to build circuits capable of amplifying electrical signals or switching them between the 0s and 1s at the heart of digital computation. Transistor fabrication is a highly complex process, however, requiring high-temperature, high-vacuum equipment. 

Now, University of Pennsylvania engineers Cherie Kagan, the Stephen J. Angello Professor in the School of Engineering and Applied Science, and Ji-Hyuk Choi have shown a new approach for making these devices: sequentially depositing their components in the form of liquid nanocrystal “inks.”

Their new study, published in Science, opens the door for electrical components to be built into flexible or wearable applications, as the lower-temperature process is compatible with a wide array of materials and can be applied to larger areas.

press release

Behavior of Materials at the Atomic Scale

Dawn Bonnell, vice provost for research and a nanotechnologist, spoke to NBC Learn about how the behavior of materials change as they approach the atomic scale.

more information

D. Lee, K. Stebe and M. Haase Devise Easier Way to Make Bijels

Bijels are bicontinuous networks of interwoven oil and water channels made stable by a percolating film of interfacially jammed colloidal particles. Traditionally fabricated by a delicate batch process via thermally-induced spinodal decomposition, bijels hold tremendous potential as promising platforms for interfacial catalysis and as fascinating vehicles for fundamental studies. A challenge with the traditional bijel formation route is that it is suitable for only few pairs of liquids with carefully tuned nanoparticle wetting properties. Postdoctoral researcher Martin Haase, working jointly with Profs. Daeyeon Lee and Kathleen Stebe, has devised a new approach, based on solvent transfer-induced phase separation (STRIPS). In STRIPS, bijels are formed continuously, from a diverse set of materials, with new degrees of control over the resulting structure. STRIPS exploits ternary liquid systems, comprising oil, water and a solvent, of which there are hundreds of candidate mixtures. If the solvent is removed in the right way, the oil and water phase separate spinodally, and nanoparticles adsorb and stabilize the structures. The nanoparticle wetting can be tuned in situ using surfactants, broadly diversifying the particles used. Solvent gradients can be tuned, for example, in a microfluidics device or via removal from a supported film, allowing bijel structures to be formed continuously, resulting in hierarchically structured particles, fibers or membranes. With this advance, we have taken a giant step toward realizing the promises of these fascinating new materials.

press release

LRSM & ASEOP Forge Collaboration with the Korea Institute of Science and Technology (KIST)

In an exciting development, we signed a Memo of Understanding to spur increased collaboration between  Korea Institute of Science and Technology (KIST), Materials and Life Science Research Division (MLSRD) and two centers of excellence at the University of Pennsylvania.  These include the newly launched Center AESOP (Center for Analyzing Evolved Structures as Optimized Products (AESOP): Science and engineering for the human habitat), directed by Shu Yang and Randall Kamien, and the The Laboratory for Research on the Structure of Matter (LRSM), directed by Arjun Yodh.   Our aim is to build on existing collaborations and synergies, and to expand them under the auspices of these  centers.  This was an exciting visit with tremendous promise of more interaction to come.

web page

Virgil Percec Puts a New Twist on Chirality

The building blocks of life, such as amino acids, sugars and DNA, all exhibit the same enantiomeric form. This phenomenon – known as homochirality – enables biological and synthetic macromolecules to achieve highly ordered structures and thus exhibit function. Recent work from the Percec group challenges the notion that homochirality is a prerequisite for the generation of highly ordered supramolecular crystals, by demonstrating that homochiral and racemic building blocks can self-assemble into crystalline arrays of identically high order. Such self-assembly is possible only via a newly elaborated cogwheel mechanism, in which the exterior of the supramolecular column is invariant to the stereochemistry of its building blocks. Alkyl chain ‘teeth’ on the columns’ periphery interlock to form the highly ordered structures. This mechanism is anticipated to provide access to other homochiral crystals with practical applications in photovoltaics and organic electronics.

news release

Arjun Yodh helps explain "Why Light Matters"

On October 27, 2015, Arjun Yodh, the Director of The Laboratory for Research on the Structure of Matter at the University of Pennsylvania, with, William W. Braham, Professor of Architecture at the University of Pennsylvania and Ravi Sheth, Professor in the Department of Physics and Astronomy at the University of Pennsylvania, spoke on “Why Light Matters” at The Franklin Institute. The event was hosted by Derrick Pitts, Chief Astronomer, The Franklin Institute and was presented to a packed audience in the Franklin Theater.

more information

LRSM summer high school science program participant receives MUREP NASA scholarship

Jordan Caraballo Vega, a freshmen at the University of Puerto Rico in Humacao, was chosen as one of ten students across the United States and Puerto Rico to receive the Minority University Research and Education Programs Small Projects scholarship awarded by NASA. The scholarship covers tuition and summer internships in NASA research laboratories up to a maximum of $15,000 annually for two years. Jordan, a PREM undergraduate, attended the Penn Summer Science Initiative program for high school students in 2014 and worked with Penn professor Jorge Santiago to form the idea for this proposed research project.

more information

LRSM research partnership with University of Puerto Rico receives $3M PREM

A partnership between the University of Pennsylvania and the University of Puerto Rico was one of six to receive $3M in funding from the National Science Foundation (NSF). The program, called the Partnership for Research and Education in Materials (PREM), links NSF Materials Research Science and Engineering Centers (MRSECs) with educational institutions that serve mainly minority populations. The five year PREM will sustain an extraordinarily successful collaboration between the LRSM (which hosts Penn’s MRSEC) and three undergraduate campuses from the University of Puerto Rico. The effort began in 1998 under the NSF CIRE program and has continued with PREM support since 2004. The collaboration will focus on diversifying the pipeline of scientists in all age groups based on research in two general materials topics to integrate research and education: nanoscale interactions of macromolecules at soft and hard interfaces and multi-functional nanodevices from optoelectronic materials. 

[ Penn news release ]
[ NSF news release ]

web page

NSF Awards $250K for Topological Materials SUPERSeed

The NSF recently awarded funding ($250K) for a new SUPERSeed, Topological Quantum Materials between Two and Three Dimensions. LRSM’s SUPERSeed will combine theory, computation and experiment on topics that lie at the intersection between materials science and topological physics: layered 2D materials, topological semimetals, and ferroelectric (FE) topological insulators. Senior investigators in the SUPERSeed are Charlie Kane, Gene Mele, and Charlie Johnson from the Department of Physics & Astronomy, Andrew Rappe from the Chemistry Department, and Ritesh Agarwal from Materials Science & Engineering; collaborators include Jessica Anna (Chemistry), I-Wei Chen and Peter K. Davies (both MSE), and Chris B. Murray (Chem/MSE). The research builds on the surprising interplay between symmetry and topology in materials electronic structure, motivated by seminal discoveries about topological insulators at Penn. The Penn collaboration was one of three SUPERSeeds selected for support by the NSF this summer, from a highly competitive group of 23 MRSEC proposals.

more information

NSF Supports Helium Conservation in the Property Measurement Facility

The NSF has awarded additional funds to support helium conservation in the Property Measurement Shared Experimental Facility (SEF). The SEF hosts over a dozen low temperature measurement capabilities requiring liquid helium. Using the award, the Property Measurement Facility will add a helium re-liquefier to a cryogenic, superconducting magnet system.  The new equipment will nearly eliminate helium consumption in the facility, and will enable high levels of instrument availability for end-users.  Helium is a vanishing resource on our planet that plays an important role in scientific discovery.  This award will allow us to recapture helium rather than releasing it into our atmosphere and, ultimately, outer space.

web page

Former LRSM Student Pioneers a Materials Breakthrough after Decades of Research

Krishan L. Luthra has recently been recognized for development of a novel lightweight and strong ceramic that is stable at high temperatures. Luthra was a graduate student with Prof. Wayne Worrell, MSE, and was supported by LRSM’s block NSF grant to study “The Chemical Behavior of Materials at Elevated Temperatures” in the 1970s. After completing his Ph.D., he went to work for GE in 1976 and now, almost 40 years later, has met with outstanding success in developing a new lightweight, strong ceramic that is stable at very high temperatures. It is being used by GE in advanced jet engines that have potential savings of up to 10% in fuel cost while improving engine thrust by 25%. To date this development has helped GE generate more than $100 billion in sales to airlines and has wider applicability.

more information

New soft matter topical group of the American Physical Society

GSOFT is a new topical group within the American Physical Society is devoted to the science of soft condensed matter. LRSM research in our soft matter IRGs and Seeds are intellectually coupled to this new APS group, led by LRSM faculty member Randall Kamien.

[ APS Topical Group on Soft Matter ]

news release

Crystal-crystal phase transitions with liquid intermediate states

Single-particle-resolution video microscopy of colloidal films reveal that transitions two different colloidal crystals (square- and triangular-lattices) occur via a two-step nucleation pathway with liquid nuclei in the intermediate stage. The nucleation pathway is favored over the direct one-step nucleation because the energy of the solid/liquid interface is lower than that between solid phases.The findings suggest that an intermediate liquid could exist in the nucleation processes of solid–solid transitions of many metals and alloys, and provide guidance for better control of the kinetics of the transition and for future refinements of solid–solid transition theory.

read article

LRSM Science Café @ World Cafe Live

The LRSM Science Café has formed a new partnership with World Cafe Live (3025 Walnut St., Philadelphia, PA), just off the Penn campus and only two blocks from the LRSM building. Beginning in January, 2013, our Science Cafés will be held in the upstairs room at WCL, starting at 6:30 pm. This is a larger venue than usual and we encourage attendees to come early for dinner before the presentation which will last, typically, 30-45 minutes and be followed by an open discussion session between speaker and the audience. The WCL is readily accessible by train, 30th St. Station, bus, 9, 21 and 42, and car, by on-street Pay and Display parking.

more information

Russell J. Composto receives NSF Special Creativity Award

The award recognizes his pioneering research on the dispersion and assembly of gold nanorods confined to polymer nanolayers and their potential applications for optical property control.

news release

Dennis Discher Elected to National Academy of Engineering

Dennis E. Discher, Robert D. Bent Professor of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia. For elucidation of the effects of mechanical forces on cell physiology and stem cell development.

read more

Charlie Kane, 2012 Oliver E. Buckley Prize

Prof. Charlie Kane will be awarded the 2012 Oliver E. Buckley Prize in Condensed Matter Physics by the American Physical Society. Professor Kane and two other researchers are being recognized “For the prediction and subsequent discovery of the new phase of matter known as topological insulators in two dimensions, also known as quantum spin Hall insulators, which lead to its generalization and prediction in three dimensional system.” The Buckley Prize will be presented at the APS March 2012 meeting in Boston, MA Feb. 27-March 2, 2012 at a special Ceremonial session.

more information